With grit, urgency and creativity, scientists address the puzzle of long-haul COVID.
[...]
Data are still emerging, says Karolinska Institute researcher Petter Brodin, but to a first approximation it appears that 70–80% of people experiencing severe acute reactions to COVID-19 are men, whereas women comprise 70–80% of those suffering from long COVID.
[...]
For example, autoantibodies could play a part, with the immune system attacking the body as it does in rheumatoid arthritis3. Perhaps viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition.
[...]
Even months after an infection, mRNA from SARS-CoV-2, as well as viral protein, have been detected in the intestines of infected individuals.
[...]
Four months after onset of COVID-19, immunofluorescence and PCR analysis of intestinal biopsies showed persistence of viral RNA and protein.
[...]
Susan Weiss at the University of Pennsylvania has long studied coronaviruses, and she wants to learn more about the persistence of SARS-CoV-2 and viral RNA. RNA does not integrate into the host genome, she says, but when a mouse is infected with murine coronavirus, viral RNA can persist in its central nervous system (CNS) without infectious virus being present. The virus infects the liver and the CNS, but persists just in the CNS. This has puzzled the field “for decades,” she says. The RNA can remain for the mouse’s whole lifetime, and “this is associated with demyelinating disease,” says Weiss. There is “no evidence at all for this in humans so I don’t really want to make an analogy—just an interesting fact.” Brodin believes that intense study of viral reservoirs, viral persistence and related aspects should be a focus in long COVID and beyond, for example for diseases such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
[...]
“The virus may be gone, but the music lingers on,” says [Avi] Nath. “What is lingering: is it the immune system that is lingering or is it parts of the virus that are lingering?” He has encountered many people with symptoms after a viral infection that were assumed to be immune-mediated conditions. He recalls one person who was part of the NIH Undiagnosed Diseases Program and was experiencing dementia-like symptoms5. The team performed whole-exome sequencing, immunoprofiling; they studied immune cells in his blood. With a phage-display method, they looked in his cerebrospinal fluid and blood for immune cells that target dengue virus and checked for autoantibodies; they assessed metabolites and tested for infectious diseases; they gave him drugs used in multiple sclerosis. The assays were inconclusive, the symptoms didn’t cease and the man passed away. The autopsy revealed that in the man’s brain, “there was dengue virus all over the place,” says Nath. Using immunohistochemistry, in situ hybridization, quantitative PCR and sequencing, the scientists found the virus had persisted in his central nervous system and brain, and it appeared this had led to panencephalitis and progressive dementia.
[...]
Months, even years, after recovering from measles, some children develop a deadly condition called subacute sclerosing panencephalitis (SSPE). Hunting for virus in the sick child’s body yields no findings. At autopsy, “you look at the brain, it’s loaded with the virus,” says Nath. What has taken place is that measles virus remains in the brain and it has mutated to the point at which it no longer forms a complete viral particle. It replicates only in a restricted form: it will form some RNA, some proteins and “it even has the ability to go from cell to cell,” he says. The changes allow the restricted virus in one neuron to fuse itself, along with its RNA and protein, with the cell membrane of a neighboring neuron. It keeps moving, infecting a succession of neurons.