• Phoenix Rising needs funds to operate: please consider donating to support PR

Potential Suramin Alternatives - Sytrinol and Kudzu (Anti Purinergic Therapy)

Hip

Senior Member
Messages
13,375
Likes
25,255
A couple of drugs that increase extracellular adenosine are dipyridamole and propentofylline (these drugs are adenosine reuptake inhibitors). Ref: 1 If you say that adenosine has anti-inflammatory effects, then these might help ME/CFS. I have actually tried propentofylline some time ago, but it does not do much.

I have some dipyridamole here, which I have not tried, but will do soon. Increasing extracellular adenosine with dipyridamole has some benefits in schizophrenia — see here.

Other adenosine reuptake inhibitors include:
Acetic acid
Progesterone
Ethanol
Hydroxyzine
Tricyclic antidepressants
Allopurinol (gout drug) — inhibits purine degradation and subsequently increases adenosine levels.
 

dreampop

Senior Member
Messages
295
Likes
693
@ Hip If there is a block that prevents ATP being broken down OR a problem separately that leads to excess purinergic signalling, I could find no indication adenosine would help with that. You might just add the unpleasant affects of adenosine (vasodilation, sleepiness) without resolving anything.

That being said, it has lead me down some interesting ideas that probably will lead nowhere (Naviaux already knows in great detail all the pathways that are relevant to is hypothesis) but are interesting to look.
 

nandixon

Senior Member
Messages
1,092
Likes
3,132
I wish I'd looked more carefully at this earlier but here is what I realized a few days ago. From a pharmacological standpoint it's important to know that the amount of suramin that Dr Naviaux has used for his studies is low enough that suramin is not causing any significant antagonism at the P2X7 receptor. (Nor at P2Y2.)

Instead, it is effectively doing the opposite. Even though suramin is a P2X7 (and P2Y2) receptor antagonist, suramin in Naviaux’ studies is acting as a purinergic receptor modulator, and it is in fact up-regulating P2X7 (and P2Y2) - and this is indeed what Naviaux found and reported in his earlier autism mouse study. Namely that gene expression of P2X7 (and P2Y2) increased from an original deficit to a normal level.

This purinergic receptor modulating ability of suramin is happening because of the P2X7 receptor being more difficult to antagonize than some of the other P2 receptors and because of suramin’s particular selectivities for the different P2 receptors it antagonizes, and because there is apparently a sort of sympathy or reciprocity among the P2 receptors (and other related receptors) due to crosstalk and ATP levels. When certain of the other P2 receptors are antagonized (inhibited) by suramin (or other P2 antagonists) the response at P2X7 seems to be to try to offset this, and P2X7 is up-regulated. That's my simplified interpretation of it, anyway. (P2Y2 was also similarly upregulated in the autism setting.)

(This phenomenon has been known for some time but just as a recent example, here's a study where, like in Naviaux’ autism studies, suramin increases P2X7 gene expression thus increasing its activity despite being a P2X7 antagonist.)

So with the knowledge that suramin is actually increasing the activity of P2X7, it seems that a good reason why both the addition of extracellular ATP (a natural agonist for P2X7) and suramin have the same effect in Dr Ron Davis’ nano-needle chip device is that they are both increasing the activity of P2X7. (Maybe Ron and his group have already realized this possibility, but just in case I'm tagging @Janet Dafoe (Rose49) and @Ben H.)

If this is correct, then the drug clemastine, which is an older generation antihistamine available over-the-counter, might possibly give similar results to suramin and ATP using Ron’s device. Clemastine increases the activity of P2X7 as follows:

Clemastine Potentiates the Human P2X7 Receptor by Sensitizing It to Lower ATP Concentrations

Extracellularly but not intracellularly applied clemastine rapidly and reversibly augmented P2X7-mediated whole-cell currents evoked by non-saturating ATP concentrations. Clemastine also accelerated the ATP-induced pore formation and Yo-Pro-1 uptake, increased the fractional NMDG+ permeability, and stabilized the open channel conformation of P2X7. Thus, clemastine is an extracellularly binding allosteric modulator of P2X7 that sensitizes P2X7 to lower ATP concentrations and facilitates its pore dilation. The activity of clemastine on native P2X7 receptors, Ca2+ entry, and whole-cell currents was confirmed in human monocyte-derived macrophages. Similar effects were observed in murine bone marrow-derived macrophages. Consistent with the data on recombinant P2X7, clemastine augmented the ATP-induced cation entry and Yo-Pro-1 uptake.
(Emphasis added)

I previously mentioned clemastine here. I'm, very preliminarily, having some good results with it myself. (This is not related to its H1 histamine-blocking ability because I regularly take two other H1 antihistamines, chlorpheniramine and diphenhydramine, and these have no effect on my ME/CFS symptoms.)

The above might also provide one explanation for a possible CD39 deficit in ME/CFS as originally hypothesized by @necessary8 here, because increasing the activity of P2X7 increases the activity of CD39 (see, e.g., this reference). Thus, decreased activity at P2X7 might cause decreased CD39.

Interestingly, although CD39 is seemingly needing to be increased in ME/CFS (if @necessary8 ‘s hypothesis is correct), if you attempt to increase CD39 directly then P2X7 activity would presumably be lowered (because CD39 reduces the amount of extracellular ATP which activates P2X7) which in turn again lowers CD39 activity. So although there's seemingly a chicken and the egg situation between P2X7 and CD39 as to which one is upstream of the other, it might be that P2X7 is what needs to be addressed first in order to correct the theoretical problem at CD39 (absent an actual antibody against CD39, for example).

I'm a bit worried now, knowing the purinergic modulating ability of suramin, that any drug that only increases P2X7 may not be sufficient to fully correct things. So, for example, clemastine might need to be combined with something else to be effective. (But whether P2Y2 activity also needs to be increased in ME/CFS, like in autism, is less clear.) It may end up being the case that nothing else will work quite like suramin because of it having a broad purinergic receptor antagonism ability but yet a considerably weaker effect at P2X7, as previously noted.

FYI: Note that clemastine was recently found to be potentially very useful in multiple sclerosis. (Reference) This, combined with many stores having already begun to phase this older antihistamine out of their lineup may make it difficult to obtain now. (As far as practical usage, this is a sedating antihistamine with a long half life so would have to be taken at night for many people.)
 
Last edited:

pattismith

Senior Member
Messages
2,402
Likes
4,499
If this is correct, then the drug clemastine, which is an older generation antihistamine available over-the-counter, might possibly give similar results to suramin and ATP using Ron’s device. Clemastine increases the activity of P2X7 as follows:
Given the fact that activation of P2X7 seems to be related to chronic pains, do we have to fear that clemastine may worsen this symptom? :thumbdown:
 

nandixon

Senior Member
Messages
1,092
Likes
3,132
Given the fact that activation of P2X7 seems to be related to chronic pains, do we have to fear that clemastine may worsen this symptom? :thumbdown:
If the same sort of P2X7 deficit exists in ME/CFS that Naviaux appears to have found in autism (or at least in an autism model), then increasing P2X7 would presumably just be bringing it back to normal. So I wouldn't think clemastine would cause an increase in pain in that case.
 
Messages
1,445
Likes
7,270
Good analysis @nandixon . There's a wealth of info in those old Naviaux papers and I'm pleased someone is trawling them as well as you are.

The devil seems to be in the detail with purinergic signalling (and cellullar biology in general - every time you read a bit more you seem to find that substance x has a secondary role opposite to its primary role, or is in a complex signalling relationship that means it depends on substances y and z. Those basic high school models of the cell sure were simplified!)

I'm sorry to say that Clemastine is unavailable in Australia these days (not approved by the Therapeutic Goods Administration) or I'd be joining you in the experiment! Altho if the anecdotal evidence piles up I'm sure online shopping would yield some.
 

dreampop

Senior Member
Messages
295
Likes
693
I wish I'd looked more carefully at this earlier but here is what I realized a few days ago. From a pharmacological standpoint it's important to know that the amount of suramin that Dr Naviaux has used for his studies is low enough that suramin is not causing any significant antagonism at the P2X7 receptor. (Nor at P2Y2.)

Instead, it is effectively doing the opposite. Even though suramin is a P2X7 (and P2Y2) receptor antagonist, suramin in Naviaux’ studies is acting as a purinergic receptor modulator, and it is in fact up-regulating P2X7 (and P2Y2) - and this is indeed what Naviaux found and reported in his earlier autism mouse study. Namely that gene expression of P2X7 (and P2Y2) increased from an original deficit to a normal level.
Do you think the dose in the impedance test is a low 'dose' though? I'd assume putting even a tiny amount of suramin into the nanoneedle is like megadose of suramin into a person(I have no idea though).
 

nandixon

Senior Member
Messages
1,092
Likes
3,132
Do you think the dose in the impedance test is a low 'dose' though?
That's a good point. In the human pediatric trial study, the amount of suramin administered resulted in a blood concentration of suramin of about 12 micromolar. I was thinking that Ron’s group might have used something comparable for testing with the nano-needle impedance device.

The IC50 (inhibitory concentration to reduce by half) for suramin at P2X7 for human cells has been variously given at as low as 40 to well over 100 micromolar, depending on the cell type and buffer conditions. I'd been thinking in terms of an IC50 of about 70 micromolar per this study. Not sure how well any of these in vitro studies translate into the actual human body

Now that I think about it some more, though, the concentration of suramin to up-regulate P2X7 might not be as important as one might expect, and a larger amount might be okay. One may only have to start with a “system” where P2X7 is down-regulated relative to the other P2 receptors for suramin to work because of its modulating effect.
 

pattismith

Senior Member
Messages
2,402
Likes
4,499
I'm sorry to say that Clemastine is unavailable in Australia these days (not approved by the Therapeutic Goods Administration) or I'd be joining you in the experiment! Altho if the anecdotal evidence piles up I'm sure online shopping would yield some.
Not available in my country either...(France):(
 

debored13

Senior Member
Messages
2,423
Likes
3,285
Location
Vermont, school in Western MA
A couple of drugs that increase extracellular adenosine are dipyridamole and propentofylline (these drugs are adenosine reuptake inhibitors). Ref: 1 If you say that adenosine has anti-inflammatory effects, then these might help ME/CFS. I have actually tried propentofylline some time ago, but it does not do much.

I have some dipyridamole here, which I have not tried, but will do soon. Increasing extracellular adenosine with dipyridamole has some benefits in schizophrenia — see here.

Other adenosine reuptake inhibitors include:
Acetic acid
Progesterone
Ethanol
Hydroxyzine
Tricyclic antidepressants
Allopurinol (gout drug) — inhibits purine degradation and subsequently increases adenosine levels.
acetic acid aka vinegar? i've also heard that acetic acid can help increase concentrations of acetylcoa
 

melihtas

Senior Member
Messages
135
Likes
378
Location
Istanbul Turkey
I tried Tavegyl (Clemastine) this week. Although its side effects should be sleepiness and constipation, it made my sleep worse, I couldn't sleep all night and it caused diarrhea. It caused the exact opposite of the expected side effects. I stopped taking it after two days.

I hope suramin will not cause similar unforeseeable side effects because it stays in blood longer than a month. The possibility is terrifying.