I'm doing some basic research on grapefruit. For those who are interested, here are a few interesting snipits on grapefruit. They bounce around.
"Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids":
"Abstract
Although the use of nanotechnology for the delivery of a wide range of medical treatments has potential to reduce adverse effects associated with drug therapy, tissue-specific delivery remains challenging. Here we show that nanoparticles made of grapefruit-derived lipids, which we call grapefruit-derived nanovectors, can deliver chemotherapeutic agents, short interfering RNA, DNA expression vectors and proteins to different types of cells. We demonstrate the in vivo targeting specificity of grapefruit-derived nanovectors by co-delivering therapeutic agents with folic acid, which in turn leads to significantly increasing targeting efficiency to cells expressing folate receptors. The therapeutic potential of grapefruit-derived nanovectors was further demonstrated by enhancing the chemotherapeutic inhibition of tumour growth in two tumour animal models. Grapefruit-derived nanovectors are less toxic than nanoparticles made of synthetic lipids and, when injected intravenously into pregnant mice, do not pass the placental barrier, suggesting that they may be a useful tool for drug delivery."
https://www.nature.com/articles/ncomms2886
"Molecular mechanisms behind the accumulation of ATP and H2O2 in citrus plants in response to ‘Candidatus Liberibacter asiaticus’ infection":
"Abstract. Candidatus Liberibacter asiaticus (Las) is a fastidious, phloem-restricted pathogen with a significantly reduced genome, and attacks all citrus species with no immune cultivars documented to date. Like other plant bacterial pathogens, Las deploys effector proteins into the organelles of plant cells, such as mitochondria and chloroplasts to manipulate host immunity and physiology. These organelles are responsible for the synthesis of adenosine triphosphate (ATP) and have a critical role in plant immune signaling during hydrogen peroxide (H2O2) production. In this study, we investigated H2O2 and ATP accumulation in relation to citrus huanglongbing (HLB) in addition to revealing the expression profiles of genes critical for the production and detoxification of H2O2 and ATP synthesis. We also found that as ATP and H2O2 concentrations increased in the leaf, so did the severity of the HLB symptoms, a trend that remained consistent among the four different citrus varieties tested. Furthermore, the upregulation of ATP synthase, a key enzyme for energy conversion, may contribute to the accumulation of ATP in infected tissues, whereas downregulation of the H2O2 detoxification system may cause oxidative damage to plant macromolecules and cell structures. This may explain the cause of some of the HLB symptoms such as chlorosis or leaf discoloration. The findings in this study highlight important molecular and physiological mechanisms involved in the host plants’ response to Las infection and provide new targets for interrupting the disease cycle."
https://www.nature.com/articles/hortres201740
"Grapefruit and its biomedical, antigenotoxic and chemopreventive properties":
"Highlights
•A number of pharmacological activities exerted by grapefruit were described.
•The health relevance of grapefruit juice interaction with medications was analyzed.
•The antigenotoxic and chemopreventive potential of grapefruit was described and discussed.
•It was shown that grapefruit may act as antioxidant, a modifier of cellular transporters, or as a CYP isoenzyme modulator.
Abstract
Grapefruit (Citrus paradisi Mcfad) is a perenifolium tree 5–6 m high with a fruit of about 15 cm in diameter, protected by the peel we can find about 11–14 segments (carpels), each of which is surrounded by a membrane and each containing the juice sacs, as well as the seeds. The fruit is made up of numerous compounds, and is known to have nutritive value because of the presence of various vitamins and minerals, among other chemicals. The fruit is also used in the field of gastronomy. Information has been accumulated regarding the participation of the fruit structures in a variety of biomedical, antigenotoxic and chemopreventive effects, surely related with the presence of the numerous chemicals that have been determined to constitute the fruit. Such studies have been carried out in different in vitro and in vivo experimental models, and in a few human assays. The information published so far has shown interesting results, therefore, the aims of the present review are to initially examine the main characteristics of the fruit, followed by systematization of the acquired knowledge concerning the biomedical, antigenotoxic and chemopreventive effects produced by the three main structures of the fruit: peel, seed, and pulp."
https://www.sciencedirect.com/science/article/pii/S0278691517307809
"Antioxidant dietary approach in treatment of fatty liver: New insights and updates":
"Abstract. Non-alcoholic fatty liver disease (NAFLD) is a common clinicopathological condition, encompassing a range of conditions caused by lipid deposition within liver cells. To date, no approved drugs are available for the treatment of NAFLD, despite the fact that it represents a serious and growing clinical problem in the Western world. Identification of the molecular mechanisms leading to NAFLD-related fat accumulation, mitochondrial dysfunction and oxidative balance impairment facilitates the development of specific interventions aimed at preventing the progression of hepatic steatosis. In this review, we focus our attention on the role of dysfunctions in mitochondrial bioenergetics in the pathogenesis of fatty liver. Major data from the literature about the mitochondrial targeting of some antioxidant molecules as a potential treatment for hepatic steatosis are described and critically analysed. There is ample evidence of the positive effects of several classes of antioxidants, such as polyphenols (i.e., resveratrol, quercetin, coumestrol, anthocyanins, epigallocatechin gallate and curcumin), carotenoids (i.e., lycopene, astaxanthin and fucoxanthin) and glucosinolates (i.e., glucoraphanin, sulforaphane, sinigrin and allyl-isothiocyanate), on the reversion of fatty liver. Although the mechanism of action is not yet fully elucidated, in some cases an indirect interaction with mitochondrial metabolism is expected. We believe that such knowledge will eventually translate into the development of novel therapeutic approaches for fatty liver."
"..... Resveratrol (trans-3,4’,5-trihydroxystilbene) is a stilbene naturally found in various food stuffs, such as grapes, berries, red wine and nuts. This molecule has been shown to control energetic metabolism in obese mice, improving the glucose homeostasis, increasing the fatty acid oxidation and inducing the expression of genes associated with the regulation of mitochondrial biogenesis[
43,
44]. The effects of high resveratrol doses (10-100 μmol/L) on mitochondrial metabolism have been evaluated in different models where it has been shown that resveratrol is able to increase the number of mitochondria in the tissues studied, and that this occurs
via a sirtuin-dependent mechanism."
".....Lycopene is a carotenoid that lacks provitamin A activity and is responsible for the red to pink colours seen in tomatoes, red
grapefruit, watermelon and apricots.
Epidemiological and experimental studies have suggested that lycopene may have chemopreventive properties against certain types of cancers, including NASH-promoted hepatocarcinogenesis, mainly as a consequence of oxidative stress decrease, which could be imparted through different mechanisms[
73]. Moreover, lycopene also reduces the development of hepatic steatosis induced by an HF diet[
74]. The key role of this carotenoid in protection against fatty liver was confirmed by the reduced plasma lycopene levels in subjects affected by NASH, suggesting a possible link between low lycopene levels and the development of liver diseases[
75]."
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483489/