Chronic fatigue syndrome is the symptom caused by mitochondrial failure
The job of mitochondria is to supply energy in the form of ATP (adenosine triphosphate). This is the universal currency of energy. It can be used for all sorts of biochemical jobs from muscle contraction to hormone production. When mitochondria fail, this results in poor supply of ATP, so cells go slow because they do not have the energy supply to function at a normal speed. This means that all bodily functions go slow.
Every cell in the body can be affected
The following explains what happens inside each cell:
ATP (3 phosphates) is converted to ADP (2 phosphates) with the release of energy for work. ADP passes into the mitochondria where ATP is remade by oxidative phosphorylation (ie a phosphate group is stuck on). ATP recycles approximately every 10 seconds in a normal person - if this goes slow, then the cell goes slow and so the person goes slow and clinically has poor stamina ie CFS.
Problems arise when the system is stressed. If the CFS sufferer asks for energy faster than he can supply it, (and actually most CFS sufferers are doing this most of the time!) ATP is converted to ADP faster than it can be recycled. This means there is a build up of ADP. Some ADP is inevitably shunted into adenosine monophosphate (AMP -1 phosphate). But this creates a real problem, indeed a metabolic disaster, because AMP, largely speaking, cannot be recycled and is lost in urine.
Indeed this is the biological basis of poor stamina. One can only go at the rate at which mitochondria can produce ATP. If mitochondria go slow, stamina is poor.
If ATP levels drop as a result of leakage of AMP, the body then has to make brand new ATP. ATP can be made very quickly from a sugar D-ribose, but D-ribose is only slowly made from glucose (via the pentose phosphate shunt for those clever biochemists out there!). This takes anything from one to four days. So this is the biological basis for delayed fatigue.
However there is another problem. If the body is very short of ATP, it can make a very small amount of ATP directly from glucose by converting it into lactic acid. This is exactly what many CFS sufferers do and indeed we know that CFS sufferers readily switch into anaerobic metabolism. However this results in two serious problems - lactic acid quickly builds up especially in muscles to cause pain, heaviness, aching and soreness ("lactic acid burn"), secondly no glucose is available in order to make D-ribose! So new ATP cannot be easily made when you are really run down. Recovery takes days!
When mitochondria function well, as the person rests following exertion, lactic acid is quickly converted back to glucose (via-pyruvate) and the lactic burn disappears. But this is an energy requiring process! Glucose to lactic acid produces two molecules of ATP for the body to use, but the reverse process requires six molecules of ATP. If there is no ATP available, and this is of course what happens as mitochondria fail, then the lactic acid may persist for many minutes, or indeed hours causing great pain. (for the biochemists, this reverse process takes place in the liver and is called the Cori cycle).
Treatment package for failing mitochondria
The biological basis of treatment is therefore explained:
Pace - do not use up energy faster than your mitos can supply it.
Feed the mitochondria - supply the raw material necessary for the mitochondria to heal themselves and work efficiently. This means feeding the mitos correctly so they can heal and repair.
Address the underlying causes as to why mitochondria have been damaged. This must also be put in place to prevent ongoing damage to mitos. In order of importance this involves:
Pacing activities to avoid undue stress to mitos
Getting excellent sleep so mitos can repair
Excellent nutrition with respect to:
taking a good range of micronutrient supplements
stabilising blood sugar levels
identifying allergies to foods
Detoxifying to unload heavy metals, pesticides, drugs, social poisons (alcohol,tobacco etc) and volatile organic compounds, all of which which poison mitos.
Addressing the common problem of hyperventilation
Address the secondary damage caused by mitochondrial failure such as immune disturbances resulting in allergies and autoimmunity, poor digestive function, hormone gland failure, slow liver detoxification.
And now for a bit of good news! AMP can be recycled, but slowly. Interestingly, the enzyme which does this (cyclic AMP) is activated by caffeine! So the perfect pick-me-up for CFS sufferers could be a real black organic coffee with a teaspoon of D-ribose!
A Vital Test in Chronic Fatigue Syndrome
The central problem of chronic fatigue syndrome is mitochondrial failure resulting in poor production of ATP. ATP is the currency of energy in the body and if the production of this is impaired then all cellular processes will go slow. It is not good enough to measure absolute levels of ATP in cells since this will simply reflect how well rested the sufferer is. The perfect test is to measure the rate at which ATP is recycled in cells and this test has now been developed by John McLaren Howard. He calls it "ATP profiles". It is a test of mitochondrial function.
Not only does this test measure the rate at which ATP is made, it also looks at where the problem lies. Production of ATP is highly dependent on magnesium status and the first part of the test studies this aspect.
The second aspect of the test measures the efficiency with which ATP is made from ADP. If this is abnormal then this could be as a result of magnesium deficiency, of low levels of Co-enzyme Q10, low levels of vitamin B3 (NAD) or of acetyl L-carnitine.
The third possibility is that the protein which transports ATP and ADP across mitochondrial membrane is impaired and this is also measured.
The joy of the ATP profiles test is that we now have an objective test of chronic fatigue syndrome which clearly shows this illness has a physical basis. This test clearly shows that cognitive behaviour therapy, graded exercise and anti-depressants are irrelevant in addressing the root cause of this illness.
To get the full picture I recommend combining this test with measuring levels of Co-enzyme Q10, SODase, Glutathione Peroxidase, L-carnitine, NAD and cell-free DNA. Cell free DNA is very useful because it reflects severity of the illness. When cells are damaged and die, they release their contents into the blood stream - cell free DNA measures the extent of this damage. The levels which come back are similar to those from patients recovering from major infections, trauma, surgery or chemotherapy - so this test puts CFS firmly in the realms of major organic pathology. SODase is an important antioxidant which mops up the free radicals produced in all the inefficient chemical reactions in the cells. Dr John McLaren-Howard has recently developed a serum L-carnitine test and made it available in September 2009. I have now included it in the Mitochondrial Function Profile.
In fact, all seven tests have now been combined as a "Mitochondrial Function Profile" and can be ordered from my practice. To order the test, please use the online order form at the bottom of the test page (see link below). I also need your completed Medical Questionnaire.
For payment methods, please see [Ordering tests]. You can also post a note requesting the test with a paper copy of the questionnaire and your payment (a cheque for 295, i.e. 225 for the tests and 70 for my letter to your GP, made payable to Sarah Myhill Limited) to my office at Upper Weston, Llangunllo, Knighton, Powys LD7 1SL. On receipt of your questionnaire and payment a test kit will be sent to you. The price for my letter reflects the fact that in that 10 - 14 page letter I interpret 7 separate tests as well as giving advice about all the various health problems reported in your questionnaire.
One other important co-factor in the production of energy in cells is D-ribose. It is used up so quickly by cells that measuring levels is unhelpful, but low levels of ATP imply low levels of D-ribose.