But if they've not shown that a positive result is more likely in those with symptoms than those without, then there is no reason to think that a positive result helps explain the symptoms.
ILADS Position Paper on the CDC's statement Regarding Lyme Diagnosis QUOTE:
http://anapsid.org/lyme/panel/ILADS Position Paper.pdf (people have said there was no research in regaurds to lyme testing, I posted the 100 or so research refferences and was told it was to much. Soo I have deleted the references, but if you want to see them the link is above underlined.
ILADS’ Position Paper on the CDC’s Statement Regarding Lyme Diagnosis International Lyme & Associated Diseases Society
www.ilads.org The Center for Disease Control’s (CDC) position on diagnosing Lyme disease (LD) is an oversimplification of a complicated clinical condition.1 The CDC’s two-tiered approach— using an ELISA and confirming positives by both IgM and IgG Western blots— potentially misses more than 40% of the patients. One year after the tick bite, this percentage may be greater than 50%. The two-tiered protocol was developed from studies using Lyme patients presenting with the Erythema Migrans (EM) rash and arthritis or neuro-borreliosis. However, not all Lyme patients have these symptoms. In one of the NIH-sponsored studies, blood was taken from Lyme-suspected patients every two weeks for a period of four months, and any positive event (defined by the presence of 5 of the 10 bands by IgG Western blot) qualified the patient.2 In contrast, other NIH-sponsored research indicated that many defined Lyme patients did not meet the CDC Western blot criteria (the presence of 5 of the 10 bands), and that the IgM response was a useful predictor of infection at all stages of disease.3, 4 Lyme disease is a problematic diagnosis. The position adopted by the CDC makes it more complicated. Many patients do not elicit an antibody response great enough to be positive by currently available ELISA assays. In fact, studies conducted by the group responsible for Lyme Disease proficiency testing for the College of American Pathologists (CAP) concluded that the currently available ELISA assays for Lyme Disease do not have adequate sensitivity to be part of the two-tiered approach of the CDC/ASPHLD, where only ELISA-positive samples can be tested by Western blotting.5 Furthermore, if patients are treated early with antibiotics, their antibody response may be reduced or curtailed.6 In addition, initial mild flu-like symptoms may be overlooked. Later, if the symptoms return, most of the antibody markers may have disappeared. Aguero-Rosenfeld et al. showed that only 70% of the documented Lyme patients in their study had a significant antibody response.3, 4 They suggested that the degree of antibody response might be related to the length of time the EM rash persists. They also reported only a 64% rate of IgM to IgG seroconversion. The reason that most ELISA assays are inadequate as screening tests is that they were not designed by the manufacturers to be sensitive at the 95% confidence level, the level typically required for screening.5 In fact, Luger and Krause found up to a 56% falsenegative rate (depending upon the commercial kit), when compared to their clinical diagnoses.7 Golightly et al. observed a lack of sensitivity (over a 70% false-negative rate) with commercial kits in early Lyme disease and from 4 to 46% with late manifestations of Lyme disease.8 Thus, independent of the ELISA results, using both IgM and IgG Western blots may improve laboratory detection of LD. ILAD's Position Paper on the CDC's Statement Regarding Lyme Diagnosis Page 2 The immunoblot or Western blot is the most useful antibody test for B. burgdorferi, when performed in a quality laboratory by experienced testing personnel. It is necessary to evaluate both IgM and IgG antibodies to B. burgdorferi. Studies by Ma, et al. and others point out the large degree of antibody variability in patients with clinically confirmed Lyme disease, including patients with physician-diagnosed EMs.9 Variability in the Western blot reflects the variability observed in the immune response of other diseases, including Hashimoto’s thyroiditis, SLE, Sjögren’s syndrome, and scleroderma. Some studies show that it is common to miss patients if only the CDC serological criteria are used.3, 4 Indeed, the CDC/ASPHLD criteria for a positive B. burgdorferi Western blot are very conservative.1 Five of ten antibody bands are required for IgG positivity. This cut-off is based on the assumption that all Lyme patients, even those without arthritis and neuroborreliosis, have similar immune systems and responses. The diversity of the immune response seen in other diseases is also disregarded. The CDC’s studies were problematic in that they primarily focused on patients with early Lyme disease (usually within four months of an EM). They also collected blood in most patients every few weeks during this four-month period and counted any positive event (five out of ten bands) as LD, even if the same patient had a negative test at a different time of the study.2 Engstrom et al.2 and Aguero-Rosenfeld et al.3, 4 confirmed that almost one-third of all Lyme patients are IgG negative during the first year. Two years after a physiciandiagnosed EM, 45% of the patients were negative by ELISA. In another study, AgueroRosenfeld et al. showed that the ELISA response declined much more rapidly than the Western blot response.4 Their study also demonstrated that the two-step protocol of the CDC/ASPHLD criteria would fail to confirm infection in some patients with culture-proven EM. Furthermore, although a majority (89%) of patients with the EM rash developed IgG antibodies by Western blot sometime during disease, only 22% were positive by the criteria of the CDC/ASPHLD.4 The Engstrom et al. study did not use the IgG blot criteria of the CDC/ASPHLD. 2 They found that 2 of 5 bands gave them a specificity of 93 to 96% and a sensitivity of 100% in the 70% of patients that produced antibody. This could imply an even lower sensitivity would be obtained had the more stringent CDC/ASPHLD criteria been used as a guideline for laboratory screening. The CDC/ASPHLD criteria for a positive IgM Western blot include the 23-25 kDa (OspC), the 39 kDa and the 41 kDa, but overlook the 31 kDa (OspA) and the 34 kDa (OspB). 1, 10 Yet the CDC reported a specificity of 95% for the IgM Western blot, based on several hundred negative controls. Engstrom et al. reported specificities of their IgM Western blot to be between 92 and 94%.[2] Some studies have suggested that the IFA and ELISA IgM assays may cross-react with ANA, EBV and other spirochetal infections,11 while other studies did not observe this with either IFA or Western blot.9,12 ILAD's Position Paper on the CDC's Statement Regarding Lyme Diagnosis Page 3 A major disagreement with the CDC/ASPHLD group arises from its statement that the IgM Western blot should be used only during the first month after tick bite. They have seemingly overlooked their own reported excellent specificity of the IgM Western blot. Studies by IGeneX, 13 Steere’s group,14 and Jain et al.15 emphasized the importance of the IgM Western blot in recurrent and/or persistent disease. Sivak et al. found that the IgM Western blot had a specificity of 96% if the patients surveyed had at least a 50% probability of having Lyme disease.16 It is important to note that a positive Western blot, to IgG and/or IgM antibodies, merely implies exposure to B. burgdorferi. The Western blot is only part of the test battery and is not, by itself, confirmatory for Lyme disease. One cannot conclude from Western blot results that a patient has Lyme disease, because that requires a clinical diagnosis. It must also be kept in mind that these antibody tests are not static but in fact change over time. Thus, a patient negative by the Western blot may seroconvert to a positive blot with treatment. Conversely, a patient positive for IgG response may develop another IgM response, suggestive of a recurrent infection. A considerable body of literature demonstrates that some seronegative Lyme patients are positive for either the Lyme bacteria DNA or pieces of the unique Borrelia outer surface antigens. Studies by Goodman et al. found that 30% of their patients with early Lyme disease were positive by PCR.17 This percentage is comparable to blood culture data by others.18 However, some studies could not obtain positive cultures or positive PCR from patients with acute Lyme disease.19 Both of these methods are technique-dependent. Manak et al. were able to detect 33% of early Lyme and 50% of late stage Lyme disease in patients not on antibiotic therapy.20 Most of their patients became PCR negative within two weeks of antibiotic therapy. They also found that during a relapse, patients might become PCR positive for a short period of time. On the other hand, using a combination of genomic and plasmid PCR, Bayer et al. found that 74% of patients with chronic (persistent) Lyme disease were PCR positive in urine samples.21 Persistent/recurrent (chronic) infection is a unique diagnostic problem because the IgG response may be absent in more than 50% of the patients.2,3 ,4 Thus in addition to the IgG Western blot, an IgM Western blot should be used. Assays that focus on antigen detection or DNA may be particularly useful diagnostically during persistent/recurrent disease.22 B. burgdorferi antigens in urine have been detected in animal models with Lyme disease.23,24,25 Similarly, B. burgdorferi antigen in urine has been seen in humans and appears to be a useful diagnostic tool.23,24,22 Data extrapolated from vaccine studies and CDC lectures suggest that the number of patients with Lyme Disease may be ten-fold higher than what is being currently reported. In spite of this, the CDC seems to be more concerned with diagnostic criteria that prevent false positives, with little concern for false negatives. A system with better balance in regard to this issue is urgently needed for accurate statistics concerning the magnitude of the number of patients with Lyme disease. ILAD's Position Paper on the CDC's Statement Regarding Lyme Diagnosis Page 4 References 1. Association of State and Territorial Public