• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of and finding treatments for complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia (FM), long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

Ventilatory threshold may be a more specific measure of aerobic capacity than peak oxygen consumptio


Senior Member
After stroke, aerobic deconditioning can have a profound impact on daily activities. This is usually measured by the peak oxygen consumption rate achieved during exercise testing (VO2-peak). However, VO2-peak may be distorted by motor function. The oxygen uptake efficiency slope (OUES) and VO2 at the ventilatory threshold (VO2-VT) could more specifically assess aerobic capacity after stroke, but this has not been tested.

To assess the differential influence of motor function on three measures of aerobic capacity (VO2-peak, OUES, and VO2-VT) and to evaluate the inter-rater reliability of VO2-VT determination post-stroke.

Among 59 persons with chronic stroke, cross-sectional correlations with motor function (comfortable gait speed [CGS] and lower extremity Fugl-Meyer [LEFM]) were compared between the different aerobic capacity measures, after adjustment for covariates, in order to isolate any distorting effect of motor function. Reliability of VO2-VT determination between three raters was assessed with intra-class correlation (ICC).

CGS was moderately correlated with VO2-peak (r = 0.52, p < 0.0001) and weakly correlated with OUES (r = 0.41, p = 0.002) and VO2-VT (r = 0.37, p = 0.01). LEFM was weakly correlated with VO2-peak (r = 0.26, p = 0.055) and very weakly correlated with OUES (r = 0.19, p = 0.17) and VO2-VT (r = 0.14, p = 0.31). Compared to VO2-peak, VO2-VT was significantly less correlated with CGS (r difference = -0.16, p = 0.02). Inter-rater reliability of VO2-VT determination was high (ICC: 0.93, 95% CI: 0.89-0.96).

Motor dysfunction appears to artificially lower measured aerobic capacity. VO2-VT seemed to be less distorted than VO2-peak and had good inter-rater reliability, so it may provide more specific assessment of aerobic capacity post-stroke.