[0034]To check whether the inhibition of elastase by AAT could prevent RNase L degradation, the inventors carried out various studies using in vitro PBMC culture from patients with CFS together with AAT concentrates. Based on these studies, the inventors established that PBMC extracts from patients with CFS show raised elastase activity, far higher than that of PBMC extracts from healthy subjects.[...]
[0035]The inventors also discovered that AAT was capable of substantially inhibiting the intracellular elastase activity of cultures of PBMC from patients with CFS.[...]
[0036]In addition, the inventors established that AAT prevented degradation of 83 kDa RNase L, to generate the hyperactive form of 37 kDa RNase L, in PBMC cultures from patients with CFS.[...]
[0037]The present inventors found that AAT activated the expression of genes involved in the 2-5A synthetase pathway so that the administration of exogenous AAT could re-establish normal RNase L activity and prevent its proteolysis in the PBMCs of patients with CFS.
[...]
[0039]The inventors also found that AAT inhibited the expression of metallothionines, and therefore the administration of exogenous AAT could reduce activation of the proinflammatory pathways of the PBMCs of patients with CFS.
[...]
A fall in NO production, due to a reduction in the expression of metallothionines induced by AAT could be another beneficial action of this protein in the context of patients with CFS.
[...]
EXAMPLE
[0049]While waiting for the results obtained in vitro, the inventors, having been granted a compassionate use authorisation, administered a preparation based on AAT to a patient diagnosed with CFS.
[0050]A female patient was diagnosed with CFS in 2003 having met the Fukuda diagnostic criteria, and other medical processes inducing chronic fatigue, such as endocrine, infectious, neoplastic and/or psychiatric disorders having been ruled out. Before beginning treatment with AAT concentrate, the patient had an elastase concentration in PBMC of 1459 U/mg (units of activity per milligram of PBMC extract); in the functional reserve assessment test, the patient exhibited a maximum oxygen consumption of 17.2 ml/kg/min (63.5% of theoretical), a maximum power of 64 watts (54.0% of theoretical), a maximum heart rate of 149 beats (87.6% of theoretical); and in the neurocognitive dysfunction study, showed very serious cognitive impairment. The patient was subjected to therapy with intravenous infusions of the AAT-based preparation (60 mg/kg of body weight weekly) for a period of eight weeks. At the end of the treatment, the patient exhibited an elastase concentration in PBMC of 134 U/mg (units of activity per milligram of PBMC extract); in the functional reserve assessment test, the patient exhibited a maximum oxygen consumption of 16.4 ml/kg/min (60.6% of theoretical), maximum power of 85 watts (71.7% of theoretical), a maximum heart rate of 151 beats (88.8% of theoretical); and in the neurocognitive dysfunction study displayed serious cognitive impairment. As a general conclusion, after treatment with the AAT-based preparation, the patient showed clear clinical improvement, she returned to work, experienced less fatigue and exhibited improved tolerance of physical exercise and slightly reduced cognitive dysfunction.
[0051]It is therefore demonstrated that by means of the present invention, patients with CFS can be effectively treated with drugs prepared on the basis of AAT. These patients would be affected by chronic inflammation of immunological cells and, according to the present invention, AAT inhibits elastase and thus avoids RNase L degradation, so preventing ion channel deregulation, which is supposedly responsible for the symptomology associated with CFS. In addition, and according to the results obtained in vitro, AAT could regulate the expression of particular genes associated with the immunological system to re-establish normal functioning of the immunological system and reduce activation of the proinflammatory pathways.