pattismith
Senior Member
- Messages
- 3,988
February/March 2017
Absctract:
Liming Pei, PhD, and Douglas Wallace, PhD, of the Center for Mitochondrial and Epigenomic Medicine (CMEM) at Children’s Hospital of Philadelphia and Pathology and Laboratory Medicine at the Perelman School of Medicine at the University of Pennsylvania are now returning to the study of mitochondrial function in a military setting with a grant from the U.S. Army.
Their powerful collaboration builds on the strength of both scientists’ labs. Dr. Pei specializes in the study of how mitochondrial genes are transcribed and function within the cell, and Dr. Wallace is an expert in mitochondrial genetics and mitochondrial diseases and a founder of the field of mitochondrial medicine.
“Mitochondrial disease affects many parts of the body, and the parts most affected are the brain, heart, and skeletal muscles, because those parts of the body have a lot of mitochondria and use a lot of energy,” Dr. Pei said. “
Their project could help improve mitochondrial function for the benefit of U.S. service members and their families, veterans, and civilians, including children and adults with mitochondrial diseases. Mitochondrial DNA is distinct from the DNA in the cell’s nucleus. Mitochondrial diseases are inherited conditions caused by a number of different mutations in mitochondrial DNA and in nuclear genes that are involved in the functions of mitochondria.
Over the last few years, Dr. Pei identified a family of transcription factor proteins to be essential for the production of mitochondria and of proteins involved in energy generation in neurons (ERR gamma) and heart cells (ERR alpha and ERR gamma).
“Our idea was that, if you increase the level of these particular proteins, that would cause the cell to make more mitochondria, and that might in fact then increase the energy output of the cell and make the cell healthier,” Dr. Pei said.
While other efforts to develop therapies for mitochondrial diseases take a precision approach, Drs. Wallace and Pei aim to power up mitochondria broadly, regardless of the underlying mutation that might cause dysfunction or disease. This is a plausible option because patients with mitochondrial disease often have a combination of some damaged mitochondria and some healthy ones. If their method increases the number of healthy mitochondria or increases healthy proteins to aid the function of unhealthy mitochondria, the net effect could be improvements in energy production.
If the principle proves successful, it opens the possibility that this type of method for boosting mitochondrial function could benefit many people with mitochondrial dysfunction, since mitochondrial defects are being associated with a broad range of common diseases such as diabetes, obesity, and neurological diseases. For military personnel and veterans, these approaches might ameliorate some of the negative effects of conflict toxicity such as exposure to Agent Orange and conditions such as Gulf War syndrome. Improving mitochondrial function could benefit people who are not sick — such as soldiers fighting in the mountains.
from here
Absctract:
Liming Pei, PhD, and Douglas Wallace, PhD, of the Center for Mitochondrial and Epigenomic Medicine (CMEM) at Children’s Hospital of Philadelphia and Pathology and Laboratory Medicine at the Perelman School of Medicine at the University of Pennsylvania are now returning to the study of mitochondrial function in a military setting with a grant from the U.S. Army.
Their powerful collaboration builds on the strength of both scientists’ labs. Dr. Pei specializes in the study of how mitochondrial genes are transcribed and function within the cell, and Dr. Wallace is an expert in mitochondrial genetics and mitochondrial diseases and a founder of the field of mitochondrial medicine.
“Mitochondrial disease affects many parts of the body, and the parts most affected are the brain, heart, and skeletal muscles, because those parts of the body have a lot of mitochondria and use a lot of energy,” Dr. Pei said. “
Their project could help improve mitochondrial function for the benefit of U.S. service members and their families, veterans, and civilians, including children and adults with mitochondrial diseases. Mitochondrial DNA is distinct from the DNA in the cell’s nucleus. Mitochondrial diseases are inherited conditions caused by a number of different mutations in mitochondrial DNA and in nuclear genes that are involved in the functions of mitochondria.
Over the last few years, Dr. Pei identified a family of transcription factor proteins to be essential for the production of mitochondria and of proteins involved in energy generation in neurons (ERR gamma) and heart cells (ERR alpha and ERR gamma).
“Our idea was that, if you increase the level of these particular proteins, that would cause the cell to make more mitochondria, and that might in fact then increase the energy output of the cell and make the cell healthier,” Dr. Pei said.
While other efforts to develop therapies for mitochondrial diseases take a precision approach, Drs. Wallace and Pei aim to power up mitochondria broadly, regardless of the underlying mutation that might cause dysfunction or disease. This is a plausible option because patients with mitochondrial disease often have a combination of some damaged mitochondria and some healthy ones. If their method increases the number of healthy mitochondria or increases healthy proteins to aid the function of unhealthy mitochondria, the net effect could be improvements in energy production.
If the principle proves successful, it opens the possibility that this type of method for boosting mitochondrial function could benefit many people with mitochondrial dysfunction, since mitochondrial defects are being associated with a broad range of common diseases such as diabetes, obesity, and neurological diseases. For military personnel and veterans, these approaches might ameliorate some of the negative effects of conflict toxicity such as exposure to Agent Orange and conditions such as Gulf War syndrome. Improving mitochondrial function could benefit people who are not sick — such as soldiers fighting in the mountains.
from here