pattismith
Senior Member
- Messages
- 3,988
Potential Role of Neuroactive Tryptophan Metabolites in Central Fatigue: Establishment of the Fatigue Circuit
Masatoshi Yamashita
First Published June 29, 2020 Review Article
Abstract
Central fatigue leads to reduced ability to perform mental tasks, disrupted social life, and impaired brain functions from childhood to old age. Regarding the neurochemical mechanism, neuroactive tryptophan metabolites are thought to play key roles in central fatigue. Previous studies have supported the “tryptophan-serotonin enhancement hypothesis” in which tryptophan uptake into extensive brain regions enhances serotonin production in the rat model of exercise-induced fatigue.
However, serotonin was transiently released after 30 minutes of treadmill running to exhaustion, but this did not reflect the duration of fatigue.
In addition, as the vast majority of tryptophan is metabolized along the kynurenine pathway, possible involvement of the tryptophan-kynurenine pathway in the mechanism of central fatigue induction has been pointed out.
More recently, our study demonstrated that uptake of tryptophan and kynurenine derived from the peripheral circulation into the brain enhances kynurenic acid production in rat brain in sleep deprivation–induced central fatigue, but without change in serotonin activity.
In particular, dynamic change in glial-neuronal interactive processes within the hypothalamus-hippocampal circuit causes central fatigue.
Furthermore, increased tryptophan-kynurenine pathway activity in this circuit causes reduced memory function.
This indicates a major potential role for the endogenous tryptophan-kynurenine pathway in central fatigue, which supports the “tryptophan-kynurenine enhancement hypothesis.”
Here, we review research on the basic neuronal mechanism underlying central fatigue induced by neuroactive tryptophan metabolites. Notably, these basic findings could contribute to our understanding of latent mental problems associated with central fatigue.
Very recently, the “tryptophan-kynurenine enhancement hypothesis” has been proposed to explain the mechanism of central fatigue15,22-25 and has been supported by evidence including reduced spontaneous motor activity in response to kynurenic acid administration, impaired memory performance in response to co-administration of kynurenic acid plus quinolinic acid,15 and elevated concentrations of tryptophan and kynurenic acid in the brain under sleep deprivation–induced central fatigue conditions.22,24
Figure 2. The neuroactive tryptophan pathway and metabolites.
In mammals, as only about 5% of tryptophan is catabolized via the serotonin pathway, the vast majority of tryptophan is metabolized in the kynurenine pathway, which is the precursor pathway for the synthesis of the neuroinhibitory molecule, kynurenic acid, and neurotoxic molecule, quinolinic acid. Is the rate of the kynurenine pathway of tryptophan metabolism involved in central fatigue? If the tryptophan-kynurenine pathway is enhanced during central fatigue, does it lead to a reduction in cognitive functions and severe fatigue?
Masatoshi Yamashita
First Published June 29, 2020 Review Article
Abstract
Central fatigue leads to reduced ability to perform mental tasks, disrupted social life, and impaired brain functions from childhood to old age. Regarding the neurochemical mechanism, neuroactive tryptophan metabolites are thought to play key roles in central fatigue. Previous studies have supported the “tryptophan-serotonin enhancement hypothesis” in which tryptophan uptake into extensive brain regions enhances serotonin production in the rat model of exercise-induced fatigue.
However, serotonin was transiently released after 30 minutes of treadmill running to exhaustion, but this did not reflect the duration of fatigue.
In addition, as the vast majority of tryptophan is metabolized along the kynurenine pathway, possible involvement of the tryptophan-kynurenine pathway in the mechanism of central fatigue induction has been pointed out.
More recently, our study demonstrated that uptake of tryptophan and kynurenine derived from the peripheral circulation into the brain enhances kynurenic acid production in rat brain in sleep deprivation–induced central fatigue, but without change in serotonin activity.
In particular, dynamic change in glial-neuronal interactive processes within the hypothalamus-hippocampal circuit causes central fatigue.
Furthermore, increased tryptophan-kynurenine pathway activity in this circuit causes reduced memory function.
This indicates a major potential role for the endogenous tryptophan-kynurenine pathway in central fatigue, which supports the “tryptophan-kynurenine enhancement hypothesis.”
Here, we review research on the basic neuronal mechanism underlying central fatigue induced by neuroactive tryptophan metabolites. Notably, these basic findings could contribute to our understanding of latent mental problems associated with central fatigue.
Very recently, the “tryptophan-kynurenine enhancement hypothesis” has been proposed to explain the mechanism of central fatigue15,22-25 and has been supported by evidence including reduced spontaneous motor activity in response to kynurenic acid administration, impaired memory performance in response to co-administration of kynurenic acid plus quinolinic acid,15 and elevated concentrations of tryptophan and kynurenic acid in the brain under sleep deprivation–induced central fatigue conditions.22,24
Figure 2. The neuroactive tryptophan pathway and metabolites.
In mammals, as only about 5% of tryptophan is catabolized via the serotonin pathway, the vast majority of tryptophan is metabolized in the kynurenine pathway, which is the precursor pathway for the synthesis of the neuroinhibitory molecule, kynurenic acid, and neurotoxic molecule, quinolinic acid. Is the rate of the kynurenine pathway of tryptophan metabolism involved in central fatigue? If the tryptophan-kynurenine pathway is enhanced during central fatigue, does it lead to a reduction in cognitive functions and severe fatigue?