http://medicalxpress.com/news/2012-05-nervous-viruses-sabotage-cell-hijack.html
To spread, nervous system viruses sabotage cell, hijack transportation
Herpes and other viruses that attack the nervous system may thrive by disrupting cell function in order to hijack a neuron's internal transportation network and spread to other cells.
Princeton University researchers made the first observation in neurons that common strains of the herpes virus indirectly take control of a cell's mitochondria, the mobile organelles that regulate a cell's energy supply, communication with other cells, and self-destruction response to infection. The team reports in the journal Cell Host and Microbe that viral infection elevates neuron activity, as well as the cell's level of calcium a key chemical in cell communication and brings mitochondrial motion to a halt in the cell's axon, which connects to and allows communication with other neurons.
The authors propose that the viruses then commandeer the proteins that mitochondria typically use to move about the cell. The pathogens can then freely travel and reproduce within the infected neuron and more easily spread to uninfected cells. When the researchers made the mitochondria less sensitive to calcium the viruses could not spread as quickly or easily.
To spread, nervous system viruses sabotage cell, hijack transportation
Herpes and other viruses that attack the nervous system may thrive by disrupting cell function in order to hijack a neuron's internal transportation network and spread to other cells.
Princeton University researchers made the first observation in neurons that common strains of the herpes virus indirectly take control of a cell's mitochondria, the mobile organelles that regulate a cell's energy supply, communication with other cells, and self-destruction response to infection. The team reports in the journal Cell Host and Microbe that viral infection elevates neuron activity, as well as the cell's level of calcium a key chemical in cell communication and brings mitochondrial motion to a halt in the cell's axon, which connects to and allows communication with other neurons.
The authors propose that the viruses then commandeer the proteins that mitochondria typically use to move about the cell. The pathogens can then freely travel and reproduce within the infected neuron and more easily spread to uninfected cells. When the researchers made the mitochondria less sensitive to calcium the viruses could not spread as quickly or easily.