- Messages
- 99
- Location
- The Netherlands
Inflammatory Biomarkers in Postural Orthostatic Tachycardia Syndrome with Elevated G-Protein-Coupled Receptor Autoantibodies (Published: 6 February 2021 )
Abstract
A growing body of evidence suggests that postural orthostatic tachycardia syndrome (POTS) may be an autoimmune disorder. We have reported in a previous manuscript that 89% of POTS patients (n = 55) had elevations in G-protein-coupled adrenergic A1 receptor autoantibodies and 53% had elevations in muscarinic acetylcholine M4 receptor autoantibodies, as assessed by ELISA. Patients with autoimmune disorders have been reported with a variety of elevated cytokines and cytokines (such as rheumatoid arthritis); thus, we evaluated a limited number of cytokines/chemokines in POTS patients with elevated adrenergic and muscarinic receptor autoantibodies.
We utilized the plasma of 34 patients from a previous study; all of the patients (100%) had autoantibodies against the A1 adrenergic receptor and 55.9% (19/34) had autoantibodies against the M4 muscarinic acetylcholine receptor. In particular, the plasma cytokine/chemokine levels were measured as biomarkers of inflammation by Quantibody® technology (Raybiotech, Peachtree Corners, GA, USA). We also evaluated the platelet dense granule numbers, as these patients frequently complain of symptoms related to platelet dysfunction. Patients were predominantly young females who displayed a multitude of co-morbidities but generally reported viral-like symptoms preceding episodes of syncope.
Eighty five percent (29/34) had platelet storage pool deficiency. Patients had elevations in five of ten cytokine/chemokines biomarkers (IL1β, IL21, TNFα, INFγ, and CD30), whereas two biomarkers had decreased levels (CD40L and RANTES). Our observations demonstrate that POTS patients known to have autoantibodies against the G-protein-coupled adrenergic A1 receptor have abnormal plasma concentrations of inflammatory cytokines.
Abstract
A growing body of evidence suggests that postural orthostatic tachycardia syndrome (POTS) may be an autoimmune disorder. We have reported in a previous manuscript that 89% of POTS patients (n = 55) had elevations in G-protein-coupled adrenergic A1 receptor autoantibodies and 53% had elevations in muscarinic acetylcholine M4 receptor autoantibodies, as assessed by ELISA. Patients with autoimmune disorders have been reported with a variety of elevated cytokines and cytokines (such as rheumatoid arthritis); thus, we evaluated a limited number of cytokines/chemokines in POTS patients with elevated adrenergic and muscarinic receptor autoantibodies.
We utilized the plasma of 34 patients from a previous study; all of the patients (100%) had autoantibodies against the A1 adrenergic receptor and 55.9% (19/34) had autoantibodies against the M4 muscarinic acetylcholine receptor. In particular, the plasma cytokine/chemokine levels were measured as biomarkers of inflammation by Quantibody® technology (Raybiotech, Peachtree Corners, GA, USA). We also evaluated the platelet dense granule numbers, as these patients frequently complain of symptoms related to platelet dysfunction. Patients were predominantly young females who displayed a multitude of co-morbidities but generally reported viral-like symptoms preceding episodes of syncope.
Eighty five percent (29/34) had platelet storage pool deficiency. Patients had elevations in five of ten cytokine/chemokines biomarkers (IL1β, IL21, TNFα, INFγ, and CD30), whereas two biomarkers had decreased levels (CD40L and RANTES). Our observations demonstrate that POTS patients known to have autoantibodies against the G-protein-coupled adrenergic A1 receptor have abnormal plasma concentrations of inflammatory cytokines.