Just thinking about the impedance test and the filter, and the coming drug assays.
We know extra pyruvate in the serum can make the impedance go away. There's a clue there, although as Ron says it is too early to interpret it.
Is there anything that's been added to the mix that has shown impedance to rise? Ron used the word dimensionality to describe the amount we can learn from this simple test and I can't wait for him to explore the "dimensionality" more by testing many many drugs on these cells!
For example, here's one that looks interesting.
The anti-fungal drug itraconazole, (which one forum member has tried and felt '
amazing' on for a while) looks like it can inhibit mTor. Woudl that cause impedance to rise?
It seems that even though it is mainly an antifungal, it also has profound effects on mTor. This abstract is intriguing to me:
I
traconazole, a clinically used antifungal drug, was found to possess potent antiangiogenic and anticancer activity that is unique among the azole antifungals. Previous mechanistic studies have shown that itraconazole inhibits the mechanistic target of rapamycin (mTOR) signaling pathway, which is known to be a critical regulator of endothelial cell function and angiogenesis. However, the molecular target of itraconazole that mediates this activity has remained unknown.
Here we identify the major target of itraconazole in endothelial cells as the mitochondrial protein voltage-dependent anion channel 1 (VDAC1), which regulates mitochondrial metabolism by controlling the passage of ions and small metabolites through the outer mitochondrial membrane. VDAC1 knockdown profoundly inhibits mTOR activity and cell proliferation in human umbilical vein cells (HUVEC), uncovering a previously unknown connection between VDAC1 and mTOR. Inhibition of VDAC1 by itraconazole disrupts mitochondrial metabolism, leading to an increase in the cellular AMP:ATP ratio and activation of the AMP-activated protein kinase (AMPK), an upstream regulator of mTOR.
VDAC1-knockout cells are resistant to AMPK activation and mTOR inhibition by itraconazole, demonstrating that VDAC1 is the mediator of this activity. In addition, another known VDAC-targeting compound, erastin, also activates AMPK and inhibits mTOR and proliferation in HUVEC. VDAC1 thus represents a novel upstream regulator of mTOR signaling in endothelial cells and a promising target for the development of angiogenesis inhibitors.