percyval577
nucleus caudatus et al
- Messages
- 1,310
- Location
- Ik waak up
the gene investigated here is chiefly expressed in the liver, brain, testis and small intestine
Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor.
da Silva et al 2016
from the Abstract (my paragraphing)
Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor.
da Silva et al 2016
from the Abstract (my paragraphing)
Vitamin D3 regulates genes critical for human health and its deficiency is associated with an increased risk for osteoporosis, cancer, diabetes, multiple sclerosis, hypertension, inflammatory and immunological diseases.
To study the impact of vitamin D3 on genes relevant for the transport and metabolism of nutrients and drugs, we employed next-generation sequencing (NGS) and analyzed global gene expression of the human-derived Caco-2 cell line treated with 500nM vitamin D3. Genes involved in neuropeptide signaling, inflammation, cell adhesion and morphogenesis were differentially expressed.
Notably, genes implicated in zinc, manganese and iron homeostasis were largely increased by vitamin D3 treatment. An ∼10-fold increase in ceruloplasmin and ∼4-fold increase in haptoglobin gene expression suggested a possible association between vitamin D and iron homeostasis. SLC30A10, the gene encoding the zinc and manganese transporter ZnT10, was the chiefly affected transporter, with ∼15-fold increase in expression. SLC30A10 is critical for zinc and manganese homeostasis and mutations in this gene, resulting in impaired ZnT10 function or expression, cause manganese intoxication, with Parkinson-like symptoms.
...
In conclusion, we have shown that vitamin D3 transactivates the SLC30A10 gene in a VDR-dependent manner, resulting in increased ZnT10 protein expression. Because SLC30A10 is highly expressed in the small intestine, it is possible that the control of zinc and manganese systemic levels is regulated by vitamin D3 in the intestine. Zinc, manganese and vitamin D are important for bone metabolism and brain health.
Future examination of a possible role for supplementation or chelation of zinc and manganese, alongside vitamin D3 administration, will further our understanding of its potential benefit in the treatment of specific illnesses, such as osteoporosis and Parkinson's disease.
open access
J Steroid Biochem Mol Biol. 2016 Oct;163:77-87. doi: 10.1016/j.jsbmb.2016.04.006. Epub 2016 Apr 20.
J Steroid Biochem Mol Biol. 2016 Oct;163:77-87. doi: 10.1016/j.jsbmb.2016.04.006. Epub 2016 Apr 20.
Last edited: