Sam7777
Senior Member
- Messages
- 115
What follows is a combination of notes, research, and excerpts taken from what I wrote back nearly 2 years ago. I believe it primarily cited one peer reviewed paper over IBS. The other stuff may be snippets from the different forums I was having discussions on at the time. It is just a crude form of ideas and questions for a full paper I never finished. This was back before I was so cognitively impaired, and still possessed my scientific writing skills from college before I had to drop out. This is dense dense stuff, but recommendable to the ardent biochemist, professional, or brave novice.
“You have to rethink and reprogram yourself to understand the root of disease is toxicity, acidity, toxemia, parasites, sluggish organs, poor nutrition, toxic environment, weak immunity, fillings, chemical imbalances, malnourishment, and malabsorbtion.”
A series of succeeding questions for the informed reader –
“You have to rethink and reprogram yourself to understand the root of disease is toxicity, acidity, toxemia, parasites, sluggish organs, poor nutrition, toxic environment, weak immunity, fillings, chemical imbalances, malnourishment, and malabsorbtion.”
A series of succeeding questions for the informed reader –
- Why do some people who have “bad nerves” seem to manifest as epidemiological and neuropsychological case studies as people with both a) initially poorly functioning HPA axis b) genetic susceptibility to disruption in their HPA axis? How much of a part do damaged detoxification organs, electrolyte imbalance caused by malabsorbtion and toxaemia, chronic stress events, and immune related issues such as CFS play a part in precipitating HPA-axis dysfunction? How much of a role does HPA-axis function play in the prognosis of environmental illness? How much of an impact do life experiences and early trauma have in the development of these conditions? Is our food really making us sick or are we so sick and depressed we cannot tolerate a normal diet to begin with? Can meditation, CBT, and EFT attenuate central sensitization and sympathetic dominance? Can controlling the mind prevent the cascade of worsening health conditions in a modern age of toxemia?
- What are the underlying pathologies of a poorly functioning endorphin system, neuroendocrine response, HPA axis, hippocampal, hypothalamic, and amygdyla in mediating psychic awareness, learning, and empathy as governed by the mesocortical limbic reward system? What kind of physical brain abnormalities could cause cognitive dysfunction and emotional dysfunction, and would they be the result of a poorly functioning HPA axis or the cause, and would they physically (without psychological affect) attenuate/potentiate environmental diseases? Is it the change in the HPA axis that 'releases' the higher functions and healthier cognitive behavior (meaning we are much more controlled by our environmental stimuli), or is it a peripheral brain action (meaning we have built in pre -determined behavior) that antagonises abnormal stress responses or excessive desensitization to stimuli? How might the HPA axis and CNS be further related? Is their poor inter-hemispheric communication of the brain or excitotoxicity? Immune and rheumatological pathologies that could alter limbic function, musculoskelatal, and neuroendocrine function? How might dysautonomia and evolutionary adaptations to chronic infection be involved in this neuralgia?
- What underlying metabolic disorder is present? Its causes? What are the roles of TSH, T3, T4, and ACTH, CRH, AVP, ADR, FH, LSH, IGF-1, HGH, GnRH, Testosterone, Androgen, Pregnenolone, Progesterone in synthesizing or stimulating the release of catecholamine, especially dopamine, adrenaline, dynorphin, enkephalin; the role of immunoglobulin, t-lymphocytes, beta cells, natural killer cells, Th1 and Th2 immune responses, and leukocytes in neurotransmitter synthesis; What is the relation of general metabolism of neurotransmitters and the pathology of defective inhibitory systems in the limbic areas; How might these same neurotransmitters and hormones play a role in causing dysautonomia, neuralgia, and peripheral neurological conditions? Why do adrenergic alpha and beta receptor function play a role as the most critical physiological subject, outside of mitochondrial physiology, when studied in neuropsychological, rheumatological, immunological, and endocrino-metabolic disorders? Does dysfunctional gluconeogenesis, cellular metabolism, and glycolysis involved in metabolic diseases such as obesity, insulin resistance, autoimmunity triggered insulin deficiency, autoimmune triggered adrenal and/or thyroid deficiency, and other autoimmune conditions point to genotoxin, neurotoxin, teratogen, and endocrine disruptor exposure;
- Could the kidney, liver, gaul bladder, or pancreas involved along with the lymphatic system be acting sluggishly, resulting in poor detoxification caused by toxic metabolites, malabsorption, stones, acidity, parasites, infection, and sequestered heavy metals? How would this effect cell levels of anti-oxidants, ATP synthesize, mitochondrial function, co-factors and enzymes, Krebs cycle, and cellular metabolism? How might nutrition elucidate an imbalance in aerobic vs. anaerobic metabolism at the cellular level? Could the metabolic acidosis incurred by sluggish detoxification organs and chronic malnutrition negatively affect neurotransmitter metabolism, synaptic meta-plasticity, and energy supply to the brain? Does targeted nutrition and allergy elimination only treat the symptom? What is more important to curing root pathology- targeted anti-pathogenic therapy or diet and immune balancing? Can endocrine disruptors, metals, teratogens, carcinogens, neurotoxins, and genotoxic compounds truly be removed from the body? Could dysautonomia, autoimmunity, chronic infection, pollution exposure, and genetic mutation be combining to create the perfect storm of debilitating conditions?