• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of, and finding treatments for, complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia, long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

Muscle-tendon weakness contributes to chronic fatigue syndrome in Gaucher's disease (2019)

SlamDancin

Senior Member
Messages
564
Abstract

BACKGROUND: Chronic fatigue (CFg) is a prevalent symptom in Gaucher disease (GD) at diagnosis (79%) and remains in a quarter of patients after years of therapy. Bone abnormalities are present in over 70% and peripheral neuropathy in about 11% of the patients, which contributes to the disabling and debilitating complications. Our hypothesis is that other factors such as muscle-tendinous weakness could have influence in the development of CFg.
METHODS: We have evaluated the fiber structure and elasticity of muscle-tendinous unit by strain-elastography (S-ELA) and analyzed their influence in the CFg. S-ELA study was performed in Achilles tendon in 25 type 1 and two type 3 GD patients, all of them with fatigue and were on enzymatic replacement therapy for mean 13 years; simultaneously, bone marrow burden by MRI and calcaneus ultrasound densitometry were evaluated. Blood cell counts, plasma biomarkers, GBA1 genotyping, and SF36 quality of life scale (QoL) were also performed.
STATISTICAL ANALYSIS: descriptive and comparative test.
RESULTS: All patients showed a normal Achilles tendinous structure. Abnormal stiff grade 2-3 was found in 17/27 (62.9%); in 11/27 (40.7%) of patients, the alteration was bilateral. There were no correlations between the S-ELA results to other variables; nevertheless, a significant correlation between the degree of tendon hardness and the low score on the QoL scales (p = 0.0035) was found. The S-ELA is a sensitive painless, fast, and low cost method to detect muscle-tendinous subclinical dysfunction that could contribute to CFg in GD. The identification of subclinical tendon alteration would be a sign of alarm, focused on the risk of development of bone complications.
CONCLUSION: Intratendinous alteration in strain-elastography is an independent variable in GD patients with persistent fatigue.


While the title says CFS they mean chronic fatigue the symptom. Still another interesting connection between abnormal connective tissue and “fatigue.” Most of my tendons, including Achilles heels, seem to be abnormally stiff. Copper, specifically mitosynergy, may be helping specifically because I may have an issue getting copper into cells that produce collagen.
 
Back