• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of and finding treatments for complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia (FM), long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

ASTHMA TRIGGERS: RESEARCHERS LOOK TO FUNGAL INFECTIONS AS A CAUSE

Waverunner

Senior Member
Messages
1,079
The article includes connections between asthma, IBD and sinusitis. I still wonder, why we only can suppress inflammation in these diseases, but never look at or treat possible causes.

Edit: Title is in capital letters unfortunately.

http://www.mayo.edu/research/discov...rchers-look-fungal-infections-cause?7335931=1

Mayo Clinic allergist Hirohito Kita, M.D., is a medical detective who's long been on the trail of a type of white blood cell called an eosinophil. It's not the culprit in this case, but a sort of cell of interest in the ongoing mystery surrounding asthma.

Initially, Dr. Kita was curious to know whether eosinophils, which trigger asthma, have similar initiation pathways as allergic reactions, which involve mast cells and the IgE antibody that prompts histamine, the nitrogen compound central in localized immune responses.

"We looked very hard at whether eosinophils get stimulated by IgE, but the result was negative," Dr. Kita says. "We needed to look for something else."

The big surprise turned up when Dr. Kita's Allergic Diseases lab found a culprit in the fungus Alternaria. The fungus lives in moist places, such as bathrooms, but is also present among vegetables and is prevalent on Midwestern farms. For most people, the fungus is harmless, although a 1992 New England Journal of Medicine case study by Mayo Clinic researchers described the sudden death of a young adult with asthma after coming in contact with Alternaria.

Dr. Kita's research provided evidence, the direct connection: Enzymes known as proteases, which are produced by the fungus, activate the eosinophils, which produce an allergic reaction. Published in the Journal of Immunology in 2008, the work has raised the potential for developing a drug therapy against Alternaria.

"For the fungus to germinate from a hard spore, it has to digest its shell with proteases," Dr. Kita explains. "Eosinophils also have a receptor for these proteases, called protease activated receptor. They recognize the protease and respond."

The same receptor also recognizes house dust mites and cockroach feces, which contain digestive enzymes and are major asthma triggers. The protease discovery also spawned new thinking about the significant role that infection can play in inciting inflammation.

"The link between fungal infection and inflammatory signaling in a disease like asthma, which traditionally has not been thought of as an infectious disease, has been incredibly important. It's paradigm-shifting science," says Mayo Clinic lung researcher Andrew H. Limper, M.D.
...
Dr. Kita set about providing answers about the intricate process of inflammation in asthma and its upper-airway counterpart, chronic sinusitis. But the work, for which he's internationally known, has also applied to a range of other diseases, from ulcerative colitis to chronic obstructive pulmonary disease (COPD).
...
He's interested in specific messengers, for instance the cytokine IL-33 and how it prompts a destructive cascade of events.

One line of investigation is whether inhibitors to those molecules in cells right at the surface of the airways might cure or moderate inflammatory diseases. The process he's studying is relevant to asthma, sinusitis and to gastrointestinal conditions, such as inflammatory bowel disease and ulcerative colitis, a condition in which epithelial cells are in constant surface contact with bacteria in the gut and yet an adverse immune response gets underway inside the cells.

"How important are the cytokines? We don't know yet," Dr. Kita acknowledges. "Our hope is that what we learn will ultimately provide a means to treat many of these diseases."