• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of and finding treatments for complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia (FM), long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To register, simply click the Register button at the top right.

Scientific American article on why Borrelia (Lyme disease) is so evasive


Senior Member
U.S., Earth
Something to Grapple with: How Wily Lyme Disease Prowls the Body (Sheikh, 2016)
The sneaky germ uses a mechanism like that of white blood cells to reach vulnerable tissues and hide from antibiotics

Lyme disease is an incredibly evasive adversary. No one is entirely sure how the bacterium that causes it spreads so widely throughout the body or why symptoms sometimes persist after the infection has been treated with antibiotics. Now researchers at the University of Toronto may finally have an explanation: The tiny, spiral-shaped bacterium called Borrelia burgdorferi can quickly grapple along the inner surfaces of blood vessels to get to vulnerable tissues or to hiding places where it can hole up beyond the reach of drugs.

B. burgdorferi uses a special adhesive protein on its surface to grab like a hook onto the endothelial cells that line blood vessels, attaching and detaching rapidly as it migrates to its destination, the Toronto microbiologists explain in a new study published Thursday in Cell Reports. “This mechanism is how the bacteria can overcome the fast flow of blood and avoid getting swept away,” says lead author Rhodaba Ebady. It is also likely that this tactic helps the pathogens get to sites where they are able to evade the immune system and treatment, Ebady says.