• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of, and finding treatments for, complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia, long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

Red Blood Cell Biomechanics in Chronic Fatigue Syndrome (Saha 2019)

Murph

:)
Messages
1,799
INTRODUCTION

Chronic Fatigue Syndrome (CFS) is a multi-systemic illness of unknown etiology, affecting millions worldwide [1], with the capacity to persist for several years. It is characterized by persistent or relapsing unexplained fatigue of at least 6 months’ duration that is not alleviated by rest. CFS can be debilitating, and its clinical definition includes a broad cluster of symptoms and signs that give it its distinct character,
and its diagnosis is based on these characteristic symptom patterns including cognitive impairment, post-exertional malaise, unrefreshing sleep, headache, hypersensitivity to noise, light or certain food items.

Although an abnormal profile of circulating proinflammatory cytokines, and the presence of chronic oxidative and nitrosative stresses have been identified and correlated with severity in CFS [2], there are no reliable molecular or cellular biomarkers of the disease.

In the present work, we focus on the pathophysiological changes in red blood cells (RBCs) since CFS is a systemic disease rather than of a particular organ or tissue, and RBCs, comprising ~45% of blood volume, are responsible for microvascular perfusion and tissue oxygenation. RBCs deform and travel through microvessels smaller
than their diameter to facilitate the optimal transfer of gases between blood and tissue. The usual shape of a RBC is a biconcave discoid, which is changed to an ellipsoid due to shear flow.

This shape gives them a specific surface area-to-volume ratio which facilitates large reversible deformations and elastic transformation [3]. We used a high throughput microfluidic platform to assess the changes in RBC deformability between CFS patients and matching healthy controls. We also performed computational studies to have a better understanding of the cell deformation. In order to explore the mechanisms for observed changes in cell deformability, we explored the membrane fluidity, reactive oxygen species, and surface charge, of RBCs.

Full paper is free here.
https://www.researchgate.net/public...Cell_Biomechanics_in_Chronic_Fatigue_Syndrome
 

Wishful

Senior Member
Messages
5,749
Location
Alberta
I prefer observation-based science too. I notice that the paper stays clear of claiming that this RBC change is a cause of ME. Hopefully the cause of the change isn't too far downstream from the cause of ME. When I'm diagnosing something (electrical or mechanical), finding a reliable abnormality gives me something to trace back to the source.