• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of and finding treatments for complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia (FM), long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

OMF: Learn firsthand about the exciting Second Annual Community Symposium

Ben H

OMF Volunteer Correspondent
Messages
1,131
Location
U.K.
Hi guys,

Here is a really nice overcap of the recent 2nd community symposium prepared by Christopher Armstrong, PhD :)

Hope you enjoy it.

bYkJQhiwg8gI5dKLEvE6i5N8-Fk_cDZn5pbvVy9-g8VsK05MPAza-k6I9K7JgVTfG__yVwZ3baLDV2DOnMdEYj1w8KAPU0-bQQVElC6Mx7mO2yMy0Imxzc10_136oFGsOKVbhqbAQjtpLbaj_hTJBFpNPTKZoCvUojx4fFt3RDyGEvS6XMotT--sAeaUeWBHe7opvQeSDfAlyl3h2Lc=s0-d-e1-ft


Dear Friends,

At the three-day Working Group Meeting and Community Symposium on the Molecular Basis of ME/CFS at Stanford University, sponsored by OMF, so much scientific progress was evident. We are clearly progressing from just data gathering to formulating new hypotheses as to the causes of symptoms and even a possible cause of the disease. The buzz of hope was palpable!

The Working Group Meeting brought together over 50 researchers from around the world. Ronald W. Davis, PhD, OMF Scientific Advisory Board Director, invited world-renowned researchers who were open to collaboration and sharing unpublished data. As Dr. Davis said, “I invited brilliant people with a high intellect to arrogance ratio who are working on ME/CFS at the molecular level. The knowledge shared this year was considerably greater than last year. The excitement to begin new collaborations was intense. They were so engaged in planning out their new collaborations that it was difficult to start the next session. It felt like an explosion of ideas.”

The Community Symposium gathered together patients, caregivers, clinicians, and researchers. We welcomed nearly 300 participants at Stanford and over 4,800 Livestream participants. The day was filled with excellent research reports, the warm embrace of community, and shared tremendous hope.

I want to thank the researchers for their dedication and hard work, and everyone involved in this great event who made it such a success. Thank you also to all the donors who made this important work possible. Without you this progress couldn’t have happened.

Below is a summary of the Community Symposium prepared by Christopher Armstrong, PhD.

With hope for all,

3Z-YaUr9ySCtnO6GqKywNXwq5XiApDoglgpHRoKjhM7RUdCQCw7aR9tl8YBY1pkk2YmNSyeso3e6f-4iKikFHu01f6dulyT7WQXisD8-dkio4ECRy-8IKYCWhIHh=s0-d-e1-ft

Linda Tannenbaum
Founder & CEO/President



Second Annual Community Symposium on the Molecular Basis of ME/CFS Summary
By Christopher Armstrong, PhD

During the last week of September, a 3-day Working Group Meeting on the Molecular Basis of ME/CFS was capped off by a Community Symposium at Stanford University. It was the second annual meeting of its kind built upon the success of the year before with the working group meeting stretching out an extra day beyond its predecessor. The quantity of contributing researchers was impressive, but the quality of the research was particularly inspiring.

The message of the year before was about trying to accumulate as much information as possible, to gather the puzzle pieces. This year the puzzle pieces have begun to be resolved with the next challenge to determine how they fit together.

The Community symposium began with a welcome from Linda Tannenbaum, OMF Founder and CEO/President, greetings from Janet Dafoe, patient liaison, and opening remarks by Ron Davis, symposium chair.

i8Q0QNhfHP8AFEGRCXk_wLMP-2m2w_SV43Et38iGXljAdbVG4KOHQRU_R1iAs0znRQdGEOtB3_99KMIwytAZajC3ravzSzw_a9mznYVMx8YZrW0wmC6_-Z6VyUxsKNZkq0AUVprp=s0-d-e1-ft

The talks began with Dr. Raeka Aiyar, the Symposium moderator, who now works for the New York Stem Cell Foundation (NYSCF). Stem cell applications for research is an area that Dr. Aiyar believes has the potential for helping understand ME/CFS and to find treatments.



-sFJTT8mVORvII6pVaBf0lQt4DieEstRXOLbAFemki3BrxgrRL7Mn8jO2yjuTERnmM8q3mVnW14OGWnkRE2gWSMxeaj5cdmUxOamgkAou2OrNit9eRFqfWXxrlu34wyXl_96hoiF8cA3xtuE=s0-d-e1-ft

Dr. Oystein Fluge gave the Keynote Address. Unable to provide specific details about the recent Rituximab trial, Dr. Fluge went on to elaborate on previous studies of metabolism on ME/CFS patients and other prospective clinical trials that are underway. Their lab is uniquely set up to allow interaction between clinical trials and observational research with both areas concurrently informing the other.

The current clinical trial Dr. Fluge is working on is CycloMe, an open-label phase 2 trial looking at the effect of cyclophosphamide on ME/CFS patients. “The results are interesting!” However, more details are not able to be shared until publication.

The central point of their metabolism studies is that it is consistent with several other publications from other researchers. The additional information they provide is an inhibited pyruvate dehydrogenase complex (PDH), an enzyme that enables the entry of sugar breakdown products to enter the mitochondria (the powerhouse of the cell). Interestingly, this enzyme is a central energy metabolism control point that can determine if sugar is largely used for energy production or if amino acids and fatty acids are being utilised instead. The latter seems to be the consensus findings across research groups.

XcIcHoYxR_g0Mb-FSfS18m8xXZqNzfoerfJcxtw7NxL4zMKPmHcCk5Jw7NjXFtx14gkTUGStCNcRJKz7eHQGQcgLHD0wPkgUgstH73qqFAXVExQHzmyrlPTx33_2Sn_4CQ=s0-d-e1-ft

Dr. Wenzhong Xiao unloads a wealth of findings from the Severely Ill Patient Study (SIPS) he heads up at Stanford. Sleep monitoring determined several alterations compared to healthy controls, while morning cortisol levels were also attenuated. Together this indicates a significant impact to the sleep/wake cycle of people with ME/CFS. Viral pathogens have long been tied to ME/CFS with no consistent findings. Dr. Xiao described an extensive virus search that found no significant difference in viral pathogens between patients and controls. The study of the microbiome revealed variations in the bacteria of the gut, and interestingly, a neuroprotective metabolite (3-Indolepropionate) produced by gut bacteria appears to be significantly reduced in ME/CFS patients.

Dr. Xiao caps off his findings by displaying an integrative web of all associated data points from the SIPS study connected to the central diagnosis of ME/CFS. The hope is to add the data from other studies to discover if the connected associations continue to hold.

FhRFwn8ZD8qV53oyHpQ-hG0O7AQbXYzLjhkk1a8RUZsBrx19JaM35Qmj_xRO4A9Etpxs4cXxwJwKeKRE7BQav4xX0hYPhbzsGGNBm7dgxoVBUTthHrjCyCn4tIo=s0-d-e1-ft

Next up is Dr. Jonas Bergquist discussing his new study looking at peptides and protein markers in the cerebrospinal fluid (CSF) from ME/CFS patients, Multiple Sclerosis (MS) patients and healthy controls. He reveals preliminary data from the study that show elevations of protein markers indicative of neuroinflammation, cell damage and repair in ME/CFS, and significant differences are observed between MS and ME/CFS patients.

Secondly, Dr. Berquist screens for steroid levels and has found a decrease of pregnenolone with non-significant downregulation of most other steroids. Pregnenolone is a neurosteroid produced in the mitochondria.

Thirdly, Adrenergic and Muscarinic receptor autoantibodies were significantly elevated in plasma from ME/CFS, and this has now been observed in two separate studies. Importantly, no such autoantibody changes were found in the CSF.

yQQUwk5zMytix2b5BB6SZUSzEgzy1BCkUYa5tfTG8hlUfhyjeMsXWnK_WOkXKaBa7EDXlWz5cBNKrG2SHuupKzGH7y_cHDSW3L45LIJOt5LdRGLzfe16Mh1jAYi4=s0-d-e1-ft

Dr. Alain Moreau is looking into the role of circulating microRNA in ME/CFS. MicroRNA are small molecules that circulate throughout the body and can regulate the production of proteins and enzymes from genes. He hypothesizes that “ME/CFS is caused by a disturbance in the expression of microRNAs, which modulate immune functions, energy metabolism and physiological stress response”. Dr. Moreau uses a massager arm cuff to stimulate a reaction in ME/CFS patients, a simile to post-exertional malaise. He measures the microRNA before and after this stimulation and measures the alteration that occurs in ME/CFS as compared to controls. Significant variations occur between ME/CFS and controls. Furthermore, the data is able to be split into 4 subtypes based on the microRNA, which relates to variations in symptom expression.

u9ZMONX1-o8sEmO-OVes-IEGrtaUMNcJXToQhZAVUpWNc6PfJYxzJPB6rjl16Cla1fN2-ypVZAoVPYQ3e2VG3yutZeSQoPaJw2UMI7DFUurtq-VDkC_oMaxcyUBzqkUVJfmwKoPA1Aa2TBa0p8dv7A-4=s0-d-e1-ft

Dr. Maureen Hanson follows in a similar vein to Dr. Moreau by looking at studying ME/CFS patients before and after an exercise challenge to compare the dynamic response of ME/CFS patients as compared to healthy controls. This study will focus on metabolite, gene expression and cytokines. Similarly, a second study looking at ME/CFS patients on Ampligen will look at symptom changes over time in conjunction with changes in metabolites, gene expression and cytokines.

Dr. Hanson also reports on a new metabolomics study looking at ME/CFS compared to controls. The findings align nicely with previous studies, and upon analyzing data across other studies in the field, there were no separate sub-groups identifiable based on the metabolites.

MxBwvSiGXVUiIPnHbpuuZey2T_88PBgEY_xn6Q4NIM7z6pE55QYPMp-cy1xJHSEtrGMIeC82bNfKfVKAio58hiRSs7MyN1W4eyioKteLy4b9yNfc_9LEVhSmFzQdNIGYqNuDtsFNHow=s0-d-e1-ft

Dr. Ron Tompkins begins by talking about the initiation of the ME/CFS Collaborative Research Center at Harvard (which Dr. Davis affectionately calls the “Stanford of the East”). Dr. Tompkins professes his embarrassment as a Doctor by the way his community generally responds to a disease they don’t understand. Dr. Tompkins has spent a lot of time researching the impact of significant trauma on the body that was significant enough to kill you (a 20% mortality rate). Through these studies he has a strong working knowledge on the interplay of inflammation, immunity and metabolism.

The initial research they aim to begin is a thorough understanding of muscle recovery with a multi-omic exploration of muscle biopsies from ME/CFS patients, the first study of its kind. They also wish to begin functional neuroimaging studies. The focus seems to be on understanding the differences in tissues of the body as distinct from blood plasma and immune cells.

With enhanced funding, the Research Center at Harvard would be ideal for a setup of clinical trials to fast-track promising and potential treatments for ME/CFS.

78LeKX4FbHZcOMorvi0shxQWoU5uS_hDcyHEAAMb2VAiv0uPVxn59t_grfdafAhNU2AFAUEpx3OcSbJZWJpFx7rhDxHRGeetLLHRT9t1UbJWfF0vOF2UJd1HEHGRpx47=s0-d-e1-ft

Michael Sikora is a graduate student under Lars Steinmetz, professor of genetics and member of the Stanford Genome Technology Center who are collaborating with Mark Davis. He has been working to establish the role of T cells and the immune system in ME/CFS. They have found the significant increase in T cells in ME/CFS patient compared to controls indicating an activated immune response. Furthermore, the T cell expansion signature appears distinct in ME/CFS from other diseases like Multiple Sclerosis and Lyme disease where immune activation is also present. Currently, they are focusing on the cause for the immune activation, whether it’s in response to an infection or in response to self (autoimmunity).

sNRiD0S6lLazUaBNCciSDJN45GMzCU-X82hTH4MzKSC9kqpQ5dsP6a2n3hYEPaTWHAbpZvQjU1sUIGY-VfjNkucemZjP5WTZeKdkYOjA3xGNexlJmjco-Cn8XQLm_oGPdrA=s0-d-e1-ft

Dr. Jarred Younger discusses his recent research on neuroinflammation. Using a similar technique to an MRI, Dr. Younger can evaluate the levels of metabolites in sections of the brain. Lactate is a metabolite found as the product of sugar breakdown for energy production (known as the process of glycolysis). Lactate was found to be elevated in areas of the brain that are responsible for the sickness response. “This is exactly what would happen if ME/CFS was a neuroinflammatory disorder”, Dr. Younger explained. The method used also enables the prediction of temperature in the brain, and temperature increase is apparent in the brain of ME/CFS patients.

The same regions of the brain in which Dr. Younger had found elevations in lactate and temperature indicative of neuroinflammation were also previously observed to have activated microglia, which are consistent with neuroinflammation.

H3iUGjsjefjdGAXA3_4bFF6dKjh2ZCyUWokrjNlp1hnpv-LkN-uglJUhYKiKy2U-c6NgzhkoDoRosctQgy9gtAQWNdS9CWvkm1ABbx5GNLtaTVPIQHzrHIcENbiQWCwMuI7mDiFVfmgWj3G_uZ9tON_sjy_lE1OUHRazRw=s0-d-e1-ft

Dr. Ron Davis discusses the search for biomarkers with a particular focus on three new technologies being developed to find differences between ME/CFS and healthy controls. First, he reintroduces the impedance test as a marker for ME/CFS. The addition of salt to ME/CFS and control plasma was enough to produce a significant alteration in the ME/CFS impedance signal as opposed to the control signal. Second, new technology produced in conjunction with San Jose State University looks to assess red blood cell deformability in ME/CFS patients by evaluating the speed of transit through a tiny capillary. They have found that ME/CFS cells are significantly less deformable than healthy cells. Finally, magnetic levitation of cells shows that ME/CFS white blood cells are lighter than those of healthy controls. All these instruments effectively separate ME/CFS and control plasma, red blood cells or white cells, and each is fabricated for a very low cost. It’s possible to create a device that combines these methods of detection to enhance specificity. All these instruments in conjunction with metabolite tests from Dr. Robert Naviaux and Dr. Robert Phair will be compared in a “bake-off” to determine the most effective diagnostic for ME/CFS. The key for a successful diagnostic is that it accurately identifies illness (low false positives and false negatives, is easy to produce and simple enough to perform that it may be usable anywhere.

dRuNojE6RuEXs6JE7_xqj_gkw5WiiVy98ToTojEDZQEAAO_t2uCenLVEDtKLq-73zbeo5gEUQH9WUv8tOvCFVdbg8RBQhW-bivioPLMqXaOW6PmLVDZYouKa3K1trA=s0-d-e1-ft

Dr. Robert Phair is now known as the “metabolic trap guy”. He comes from a background of engineering and physiology and hopes to apply systems engineering to human physiology. His focus is on modeling of complex metabolic systems, with a corrent focus on substrate inhibiting enzymes.

He emphasizes that the outbreaks of ME/CFS were a particularly important clue to him that suggested that any genetic component related to the illness would likely be common.

He discusses non-linear system theory as important for biology but especially important in explaining some of the confounding elements of ME/CFS. His hypothesis began with identifying areas of metabolism that could form bi-stability, two steady states that can be entered into that are functionally distinct from each other, one healthy and one unhealthy.

First he found mutations in a gene called IDO2. IDO2 is an enzyme that converts tryptophan (an essential amino acid) to kynurinine. Tryptophan is also processed to seratonin. IDO2 is one of two enzymes that process tryptophan, the other being IDO1. These two enzymes seem to do identical things, but it’s actually more complicated. At lower levels of tryptophan, IDO1 converts tryptophan to kynurenine, but IDO2 is inactive. But IDO1 is a substrate-inhibited enzyme whereby too much tryptophan in a cell stops its function, causing tryptophan to no longer be processed and build up its levels in the cell. At these high levels of tryptophan, IDO2 takes over the processing of tryptophan. However, all the ME/CFS patients in the SIPS cohort had mutations in IDO2 making it non-functional. Without IDO2 there is essentially a block created that stops tryptophan converting to kynurenine and could force it through to serotonin.

Flux experiments were initiated to measure the levels of tryptophan and kynurenine in ME/CFS white blood cells; these showed that tryptophan is higher and kynurenine is lower than in healthy controls, consistent with the existence of a metabolic trap in the patients tested. These experiments have only been conducted on 6 ME/CFS patients and 6 healthy controls so far, and more patients will be tested as fast as possible.

Dr. Ron Davis closes the symposium by explaining the importance of Dr. Phair's findings but also warns about cherry-picking of data to support a hypothesis. Good science is accomplished by forming a testable hypothesis that makes specific predictions and doing experiments to see if those predictions obtain. This work is still at the beginning and will require much more exploration to determine whether it is definitive of ME/CFS. Dr. Davis also emphasizes the need for funding at the present time. To any big donors out there, he urged, “This is the time to donate, as we may be on the precipice of a crucial finding for the illness.” Dr. Davis then explained how fundamental these pathways are to the control of a person’s biochemistry, and that It’s exceptionally dangerous to begin experimenting on one’s self without more information. Self-experimentation could have dire consequences. Dr. Davis implores the patients to be patient.

In summary, Dr. Davis states: “A lot of progress has been made in the last year. There is a lot more data and it is now generating testable hypotheses. More exciting collaborations are being established. Excellent new people are entering the field. The future is looking even more hopeful. Our partnership with OMF has been instrumental for this progress and for the support of this symposium. We are now on the brink of even more exciting progress, but as always, funding is the rate-limiting step. Now is a crucial time to donate to accelerate the breakthroughs.”



www.omf.ngo



B

@Janet Dafoe (Rose49) @AshleyHalcyoneH @marilynbsg
 
Last edited:

alex3619

Senior Member
Messages
13,810
Location
Logan, Queensland, Australia
However, all the ME/CFS patients in the SIPS cohort had mutations in IDO2 making it non-functional.
I understood this was the case, and I would like to point out this is an extremely important finding. It is likely, though far from certain, that this is at least one part of the ME puzzle. The small pilot investigation further confirmed this. Much more work has to be done, but I currently consider this the most important initial indicator of cause I have ever seen.

Restoring IDO2 function even temporarily might correct the problem, but this is a key metabolic path and we need good research to find both a safe and effective way to do this. Once IDO2 has been restored for a time then IDO1 should take over, switching ME off. Unfortunately if you have one or more of these genetic polymorphisms, and the hypothesis is correct, then you will always be at risk of getting ME again under similar conditions to the first time, such as a severe viral infection. It might also be the case that there are secondary issues that complicate matters.

Next year may be a very good year for ME research, and I wish all the researchers, and of course patients, the best of luck.
 

Ben H

OMF Volunteer Correspondent
Messages
1,131
Location
U.K.
I understood this was the case, and I would like to point out this is an extremely important finding. It is likely, though far from certain, that this is at least one part of the ME puzzle. The small pilot investigation further confirmed this. Much more work has to be done, but I currently consider this the most important initial indicator of cause I have ever seen.

Restoring IDO2 function even temporarily might correct the problem, but this is a key metabolic path and we need good research to find both a safe and effective way to do this. Once IDO2 has been restored for a time then IDO1 should take over, switching ME off. Unfortunately if you have one or more of these genetic polymorphisms, and the hypothesis is correct, then you will always be at risk of getting ME again under similar conditions to the first time, such as a severe viral infection. It might also be the case that there are secondary issues that complicate matters.

Next year may be a very good year for ME research, and I wish all the researchers, and of course patients, the best of luck.

Indeed @alex3619 . I know you have been in the game (so to speak) a long time, so it is always interesting to hear your thoughts.

I agree with you on the 'always at risk' potential too, if this hypothesis is indeed correct.


B
 

Neunistiva

Senior Member
Messages
442
Thank you Dr. @ChrisArmstrong for the great summary. It's so nice to finally have things to look forward to.

It's difficult for me to understand most of the work being done but Dr. Younger's work on brain temperature certainly resonated with me since it often feels like my brain is overheating. My father works with computers and I've joked years ago with him asking him if he could lend me some of the cooling systems he has to cool down my CPU.

I just wish all these researchers would have proper funding they deserve.

Restoring IDO2 function even temporarily might correct the problem,

Nice to hear your thoughts about it. I was wondering if it was possible to restore IDO2 function for a while or if intracellular tryptophan levels would be lowered until IDO1 kicks back in.

Of course I hope for a cure, but even a short respite would be great to get out of bed and go to the dentist to finally have my tooth fixed :D
 

M Paine

Senior Member
Messages
341
Location
Auckland, New Zealand
Thanks @Ben H (and any others) for summarising the symposium.

Is there a video version of the talk from Dr Phair, or the closing remarks from Ron?

On the Kynurenine note, I recall Dr Hornigg was very interested in the pro inflammatory role of Kynurenine in the gut. I recall that Columbia detected elevated amounts of Kynurenine in patient samples. Great to see this finding and theirs marrying up.

I'm struggling to follow the roles of those proteins mentioned, but it sounds like a great finding. I really hope that this leads to something.
 

msf

Senior Member
Messages
3,650
I hope those with high intellect and high arrogance values are invited too next time. I haven't really studied the history of science, but I do know some not so nice guys have made some pretty important discoveries (for example, without Reiter's triad my diagnosis would be less convincing).
 

Tally

Senior Member
Messages
367
I hope those with high intellect and high arrogance values are invited too next time

I honestly hope they are not. We already had researchers with high arrogance work on this illness, and we all know how that went.

some not so nice guys have made some pretty important discoveries

I believe that when Dr. Davis speaks of arrogance he means researchers who aren't ready to admit their own mistakes, adjust their hypothesis and move on. He probably means scientists who would rather have 20 million people suffer than take a hit to their ego.

without Reiter's triad

Interesting that you should mention him. The triad was also reported in 1916 by Fiessinger and Leroy so he wasn't deserving of the recognition he got, and he incorrectly concluded that the triad was the result of a spirochetal infection (probably because of his earlier discovery of bacteria causing another disease. I guess his arrogance blinded him).

No, Dr. Davis is right, this illness in particular needs low arrogance levels.
 

Hajnalka

Senior Member
Messages
910
Location
Germany

msf

Senior Member
Messages
3,650
I honestly hope they are not. We already had researchers with high arrogance work on this illness, and we all know how that went.



I believe that when Dr. Davis speaks of arrogance he means researchers who aren't ready to admit their own mistakes, adjust their hypothesis and move on. He probably means scientists who would rather have 20 million people suffer than take a hit to their ego.



Interesting that you should mention him. The triad was also reported in 1916 by Fiessinger and Leroy so he wasn't deserving of the recognition he got, and he incorrectly concluded that the triad was the result of a spirochetal infection (probably because of his earlier discovery of bacteria causing another disease. I guess his arrogance blinded him).

No, Dr. Davis is right, this illness in particular needs low arrogance levels.

Interesting about Reiter, but either you are saying arrogant people never make important contributions to science or they never will in ME, both of which seem like rather odd positions. To contradict both, I just have to introduce Lipkin, who certainly isn't a naturally modest person, but who has secured major funding for ME research which is already producing significant results.
 
Last edited:

Tally

Senior Member
Messages
367
either you are saying arrogant people never make important contributions to science or they never will in ME

I am saying neither.

There are no guarantees in science, but there is increasing the odds of getting an important contribution in the shortest amount of time using very limited funding that ME/CFS has. I am just saying that I agree odds are the highest if, as Dr. Davis put it, people with highest intelligence to arrogance ratio work on it.

Judging from the OMF Symposium there is a lot of people like that so I don't see why we would need to go after highly arrogant people.

To contradict both, I just have to introduce Lipkin

Let's not resort to personal insults, let's keep this as a generalized discussion. I don't know Lipkin personally and I am grateful to any researcher working on this illness.
 

msf

Senior Member
Messages
3,650
Me too, and did you see what I actually wrote? I didn't call him arrogant, I merely said he wasn't naturally modest, as anyone who has seen one of his talks would be able to tell. And no one said anything about odds, so you can't agree with it.
 

FMMM1

Senior Member
Messages
513
I'm curious, is there a working relationship between Columbia and Stanford?

I think I'm not going to answer your question but here goes.

If you listen to Ron Davis's talk at the symposium then you'll hear him praise Maureen Hanson (and other researchers who are part of OMF). He explained that when Maureen offers to do X then he can forget about it i.e. since he's confident that it will be done well. I suppose they brain storm and, based on available resources, they allocate work areas.
I'm not clear what Maureen's current work areas are. She got one of the NIH grants in exercise and ---? You could check out the NIH grant awards for details. She's helping out with the Norwegian's who are doing the faecal transplant study.
A wild guess is that the study Maureen did on altered microbiome (lipopolysaccharide in blood) might possibly explain the altered cellular respiration in ME/CFS [http://neuroimmune.cornell.edu/research/microbiome/]. I.e. switch to burning amino acids [Armstrong, Fluge etc.].
Hanson's group also has specialists in MRI; name escapes me.

Maureen also has a personal reason for wanting to see progress in ME/CFS; hence her move from plants to ME/CFS.

Ron and Maureen are keen to move this research on; this collaborative working is aimed at delivering that.


Consider writing to your elected representative i.e. to request funding for ME/CFS research including the development of a diagnostic test.
I've written to the European Union Committee on the Environment, Public Health and Food Safety (ENVI) requesting that they lobby for funding for research into ME/CFS including the development of a diagnostic test [https://forums.phoenixrising.me/ind...ch-theyre-working-for-you.61516/#post-1003111].
Currently the ENVI Committee is lobbying for increased funding for research into Lyme disease and the development of a diagnostic test.
In 2016 the European Commission [European Union civil service] said [regarding Lyme disease] that "Both basic research and the development of new diagnostics, treatments and vaccines for Lyme borreliosis are funded by EU research and innovation framework programmes. The total EU contribution to such projects since 2007 amounts to EUR 33.9 million [US dollars]" [http://www.europarl.europa.eu/doceo/document/E-8-2016-008631-ASW_EN.html].

ME/CFS received no funding from the European Union [http://www.europarl.europa.eu/doceo/document/E-8-2017-006901-ASW_EN.html].
 

FMMM1

Senior Member
Messages
513
I was meaning Columbia, not Cornell... or am I missing something?

No I was missing something.

I've no idea if there's a working relationship between Columbia and Cornell but I'd expect that it would be well known i.e. if there was one.

You're in a much better position to assess Hornig, and Lipkin's, research; I think some of it has been highly significant e.g. cytokine studies ---. Can't comment on the kynurenine stuff you refer to above but might try to see if I can understand it*.

If you can check out Ron Davis's presentation at the Invest in ME Conference (2018). After Ron Davis does his presentation Mandy Hornig asks him a multi-part question; so many parts to the question it makes me smile. Ron does his best but I think he answers about 50% of the question. So they both participate in the annual Invest in ME Conference colloquium.


*Only started looking at this but it seems interesting http://simmaronresearch.com/2016/06...tigue-syndrome-mecfs-project-dr-hornig-talks/
 
Last edited:

M Paine

Senior Member
Messages
341
Location
Auckland, New Zealand
I was asking about Columbia and Stanford. Mostly because of the commonality between their Kynurenine findings. Mady Hornig seemed to be driving some of that research from what it seemed like, presumably she's no longer working in Ian Lipkin's Lab, as she is suing Ian Lipkin for sexual descrimination. It's a real shame for the ME/CFS research community, Mady Hornig's work helped tremendously.
 

FMMM1

Senior Member
Messages
513
I was asking about Columbia and Stanford. Mostly because of the commonality between their Kynurenine findings. Mady Hornig seemed to be driving some of that research from what it seemed like, presumably she's no longer working in Ian Lipkin's Lab, as she is suing Ian Lipkin for sexual descrimination. It's a real shame for the ME/CFS research community, Mady Hornig's work helped tremendously.

Fully agree; she's an excellent researcher who contributed significantly to ME/CFS research. I briefly met her a few times; giving talks in Northern Ireland. She really went out of her way to engage with the ME/CFS community. Very sorry to hear this.