• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of, and finding treatments for, complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia, long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

High density lipoproteins selectively promote the survival of human regulatory T cells

Gondwanaland

Senior Member
Messages
5,094
https://www.ncbi.nlm.nih.gov/pubmed/28377425
J Lipid Res. 2017 Aug;58(8):1514-1523. doi: 10.1194/jlr.M072835. Epub 2017 Apr 4.
High density lipoproteins selectively promote the survival of human regulatory T cells.

Abstract
HDLs appear to affect regulatory T cell (Treg) homeostasis, as suggested by the increased Treg counts in HDL-treated mice and by the positive correlation between Treg frequency and HDL-cholesterol levels in statin-treated healthy adults. However, the underlying mechanisms remain unclear. Herein, we show that HDLs, not LDLs, significantly decreased the apoptosis of human Tregs in vitro, whereas they did not alter naïve or memory CD4+ T cell survival. Similarly, oleic acid bound to serum albumin increased Treg survival. Tregs bound and internalized high amounts of HDL compared with other subsets, which might arise from the higher expression of the scavenger receptor class B type I by Tregs; accordingly, blocking this receptor hindered HDL-mediated Treg survival. Mechanistically, we showed that HDL increased Treg ATP concentration and mitochondrial activity, enhancing basal respiration, maximal respiration, and spare respiratory capacity. Blockade of FA oxidation by etoxomir abolished the HDL-mediated enhanced survival and mitochondrial activity. Our findings thus suggest that Tregs can specifically internalize HDLs from their microenvironment and use them as an energy source. Furthermore, a novel implication of our data is that enhanced Treg survival may contribute to HDLs' anti-inflammatory properties.