• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of, and finding treatments for, complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia, long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

Differential involvement of α4β2, α7 and α9α10 nicotinic acetylcholine receptors in B lymphocyte act

lansbergen

Senior Member
Messages
2,512
http://www.ncbi.nlm.nih.gov/pubmed/21146628
Int J Biochem Cell Biol. 2011 Apr;43(4):516-24. doi: 10.1016/j.biocel.2010.12.003. Epub 2010 Dec 10.
Differential involvement of α4β2, α7 and α9α10 nicotinic acetylcholine receptors in B lymphocyte activation in vitro.

Koval L, Lykhmus O, Zhmak M, Khruschov A, Tsetlin V, Magrini E, Viola A, Chernyavsky A, Qian J, Grando S, Komisarenko S, Skok M
Palladin Institute of Biochemistry, 9 Leontovicha str., 01601 Kyiv, Ukraine. skok@biochem.kiev.ua
Abstract

Mouse B lymphocytes express several nicotinic acetylcholine receptor (nAChR) subtypes, their exact functions being not clearly understood. Here we show that α7 nAChR was present in about 60%, while α4β2 and α9(α10) nAChRs in about 10% and 20% of mouse spleen B lymphocytes, respectively; Balb/c and C57Bl/6 mice possessed different relative amounts of these nAChR subtypes. α4β2 and α7, but not α9(α10) nAChRs, were up-regulated upon B lymphocyte activation in vitro. Flow cytometry and sandwich ELISA studies demonstrated that α7 and α9(α10) nAChRs are coupled to CD40, whereas α4β2 nAChR is coupled to IgM. B lymphocytes of both α7(-/-) and β2(-/-) mice responded to anti-CD40 stronger than those of the wild-type mice, whereas the cells of β2(-/-) mice responded to anti-IgM worse than those of the wild-type or α7(-/-) mice. Inhibition of α7 and α9(α10) nAChRs with methyllicaconitine resulted in considerable augmentation of CD40-mediated B lymphocyte proliferation in cells of all genotypes; stimulation of α4β2 nAChRs with epibatidine increased the IgM-mediated proliferation of the wild-type and α7(-/-), but not β2(-/-) cells. Inhibition of α9(α10) nAChRs with α-conotoxin PeAI exerted weak stimulating effect on CD40-mediated proliferation. This nAChR subtype was up-regulated in α7(-/-) B-cells. α7 nAChRs were found recruited to immune synapses between human T and B lymphocytes, both of which produced acetylcholine. It is concluded that α7 nAChR fulfills inhibitory CD40-related mitogenic function, α4β2 nAChR produces a stimulatory IgM-related effect, while α9α10 nAChR is a "reserve" receptor, which partly compensates the absence of α7 nAChR in α7(-/-) cells. Acetylcholine is an additional mediator to modulate activation of interacting T and B lymphocytes.