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Abstract Patients who present with severe intractable appar-
ently idiopathic fatigue accompanied by profound physical
and or cognitive disability present a significant therapeutic
challenge. The effect of psychological counseling is limited,
with significant but very slight improvements in psychometric
measures of fatigue and disability but no improvement on
scientific measures of physical impairment compared to con-
trols. Similarly, exercise regimes either produce significant,
but practically unimportant, benefit or provoke symptom ex-
acerbation. Many such patients are afforded the exclusionary,
non-specific diagnosis of chronic fatigue syndrome if rudi-
mentary testing fails to discover the cause of their symptoms.
More sophisticated investigations often reveal the presence of
a range of pathogens capable of establishing life-long infec-
tions with sophisticated immune evasion strategies, including
Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalo-
virus, Mycoplasma, and Borrelia burgdorferi. Other patients
have a history of chronic fungal or other biotoxin exposure.
Herein, we explain the epigenetic factors that may render such

individuals susceptible to the chronic pathology induced by
such agents, how such agents induce pathology, and, indeed,
how such pathology can persist and even amplify even when
infections have cleared or when biotoxin exposure has ceased.
The presence of active, reactivated, or even latent Herpes virus
could be a potential source of intractable fatigue accompanied
by profound physical and or cognitive disability in some pa-
tients, and the same may be true of persistent Parvovirus B12
and mycoplasma infection. A history of chronic mold expo-
sure is a feasible explanation for such symptoms, as is the
presence of B. burgdorferi. The complex tropism, life cycles,
genetic variability, and low titer of many of these pathogens
makes their detection in blood a challenge. Examination of
lymphoid tissue or CSF in such circumstances may be
warranted.
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Abbreviations
CFS Chronic fatigue syndrome
TNFα Tumor necrosis factor
IL Interleukin
NF-ΚB Nuclear factor-ΚB
IFN Interferons
TLR Toll-like receptors
PAMPs Pathogen-associated molecular patterns
DAMPs Damage-associated molecular patterns
MAPK Mitogen-activated protein kinase
ROS Reactive oxygen species
RNS Reactive nitrogen species
4-HNE 4-Hydroxynonenal
MDA Malondialdehyde
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EBV Epstein-Barr virus
CAEBV Chronic activated Epstein-Barr virus syndrome
ME Myalgic encephalomyelitis
CEBVS Chronic EBV syndrome
MS Multiple sclerosis
MSRV MS retrovirus
HHV Human herpes virus
Th2 T helper 2
DCs Dendritic cells
Bcl2 B cell lymphoma 2
BAX Bcl-2-associated X protein
PCR Polymerase chain reaction
NS1 Nonstructural protein
CNS Central nervous system
CSF Cerebrospinal fluid
TGF-β1 Transforming growth factor β1
MRI Magnetic resonance imaging
HCMV Human cytomegalovirus
Nrf2 Nuclear factor erythroid 2 [NF-E2]-related factor 2
mTOR Mammalian target of rapamycin protein
Bf Borrelia burgdorferi
PG Prostaglandin
ERK Extracellular signal-regulated kinase
COX-2 Cyclooxygenase 2
SC Stachybotrys chartarum
NADH Reduced nicotinamide adenine dinucleotide
JNK c-Jun N-terminal kinase
FoxP3 Forkhead box P3
DON Vomitoxin or deoxynivalenol
STAT3 Signal transducer and activator of transcription 3
iNOS Inducible nitric oxide synthase

Introduction

Patients who present with severe, apparently idiopathic fa-
tigue, together with profound levels of physical and or cogni-
tive disability, present a considerable therapeutic challenge.
The effects of psychological approaches are limited. In an
open label study, counseling achieved a statistically significant
but very slight reduction in self-perceived psychometric mea-
sures of fatigue and disability, compared with intermittent
psychiatrist consultations, but produced no ameliorative effect
on objective measures of disability [1]. The same pattern is
observed in studies using differing exercise regimes. These
approaches can once again produce significant, but very
slight, improvements in self-perceived psychometric parame-
ters, but either produce significant, but clinically unimportant
improvements in scientific measures of disability [1] or even
potential harm [2]. Many such patients are afforded the exclu-
sionary, non-specific, diagnosis of chronic fatigue syndrome
(CFS), according to a plethora of different selection criteria

[3], if rudimentary testing does not reveal the cause of their
symptoms.

Sophisticated tests, however, often reveal profound immu-
nological abnormalities in such patients and evidence of active
pathogen activity [4, 5]. A study of 375 patients with appar-
ently idiopathic disabling fatigue revealed pathological stim-
ulation of lymphocytes together with abnormally elevated and
distributed pattern of CD4+, CD8+, and CD19+ leucocytes in
53 % of patients and depleted levels of IgG3 in 59 % of the
study population. More than half had circulating immune
complexes and many tested positive for anti-nuclear antibod-
ies [6]. Moreover, greater than 70 % of patients also displayed
objective signs of active pathogen invasion [6]. These results
support earlier work by a team led by the same author, with
patients once again suffering from apparently idiopathic fa-
tigue of an infectious onset where 50 % of the patients
displayed lymphadenopathy and 73 % had objective evidence
of persistent Herpes virus activity [7]. These findings are by
no means atypical, as we shall discuss; however, not everyone
with apparently idiopathic fatigue has evidence of chronic
pathogen activity, although many have a documented infec-
tious history to their illness [8]. Moreover, many of the viruses
and other pathogens shown to be active in many of these
patients are normally latent and or asymptomatic in the gen-
eral population.

How do we reconcile these observations and explain how
some people display evidence of active pathogen activity,
while others who are infected with the same pathogens do
not, and why do some people develop a phenotype of severe
intractable fatigue following an infection while, thankfully,
the vast majority of the population do not? Variations in strain
or tissue tropism are obvious potential causes, and this will be
discussed later. However, the work of numerous researchers
investigating the occurrence of polymorphisms in populations
of people with apparently idiopathic fatigue may well shed
some light on other potential variables. In a cohort of 80 peo-
ple afforded a diagnosis of CFS, Carlo-Stella and fellow
workers reported a pattern of cytokine polymorphisms, which
would render the bearer highly susceptible to a prolonged or
severe inflammatory response [9]. A similar pattern was seen
in a recent study where the authors also noted that the pattern
of cytokine polymorphisms in their BCFS^ patients differed
from those with a diagnosis of major depression [10]. The
authors of another recent study examining the effect of cyto-
kine polymorphisms on the severity of fatigue experienced by
patients with HIV reported that the severity of fatigue was
associated with polymorphisms in tumor necrosis factor
(TNF)α, interleukin (IL)-1β, and nuclear factor (NF)-ΚB,
providing further evidence of an association between inflam-
mation and fatigue [11].

Quite subtle variation in the base sequences of genes
governing the innate immune response can alter an individ-
ual’s susceptibility to infection and the consequent
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development of diseases in quite profound and specific ways
[12, 13]. Functional polymorphisms in genes effecting or reg-
ulating the immune response are also a major factor in deter-
mining the trajectory and prognosis of infectious illnesses and
are also predictive of enduring pathology [14]. Moreover,
polymorphisms in TNF, IL-1β, interferons (IFNs), IL-6,
and IL-10, acting individually or synergistically, can amplify
the severity and duration of the immune response to acute
pathogen invasion [14]. Helbig et al. reported that patients
with polymorphisms in TNFα, IFNγ, and HLA-DRB alone,
or in combination, developed long-term fatigue and disability
following acute pathogen invasion, whereas patients free of
such polymorphisms recovered normally [15, 16]. On a more
generic level, the severity of acute illness and the level of
pro-inflammatory cytokine production is deterministic of
symptom severity and duration [17, 18]. Honsettre et al.
[19] determined that patients who experienced abnormally
elevated cytokine production during initial infection went
on to develop chronic long-term pathology, while the patients
with expected levels of cytokine production did not. It is also
noteworthy that a prolonged and or severe infection can
leave an individual with chronically activated microglia
[20]. This effect can also be achieved via sequential lesser
infections as the result of the development of microglial
priming [21].

The question arises as to how this long-term pathology is
achieved and maintained, and why severe or prolonged im-
mune activity and inflammation can sometimes produce seri-
ous long-term sequelae, both in terms of immune dysregula-
tion and incapacitating fatigue. Engagement of Toll-like re-
ceptors (TLRs) by pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns
(DAMPs) leads to the initiation of the innate immune response
[22]. Activation of the TLR2/4 complex induces the expres-
sion of intracellular signaling networks, such as NF-κB and
mitogen-activated protein kinases (MAPK) with subsequent
up-regulation of pro-inflammatory cytokines, reactive oxygen
(ROS), and reactive nitrogen species (RNS) [22–24]. In ge-
netically susceptible individuals, with the polymorphisms
discussed above, an excessive or prolonged inflammatory re-
sponse can lead to a massive cytokine surge, which in turn can
lead to abnormally high production of reactive oxygen and
nitrogen species including the very toxic peroxynitrie [20].
Elevated levels of ROS and RNS generated by TLR2/4 acti-
vation can attack an array of cellular molecules, including
unsaturated membrane fatty acids, generating a range of dam-
aged molecules , including protein carbonyls , 4-
hydroxynonenal (4-HNE), malondialdehyde (MDA), and
nitroso-protein adducts, and oxidized and degraded DNA.
These can function as redox-derived damage-associated pat-
terns or DAMPS [25, 26] exacerbating TLR2 and or TLR4
activity, thus provoking even greater synthesis of RNS, ROS,
and pro-inflammatory cytokines in a self-sustaining, self-

amplifying feed forward loop, called the BTLR-radical cycle^
[22].

Degraded mitochondrial DNA is also known to act as a
DAMP and activates TLR2 and TLR4 receptors [27, 28].
The TLR-radical cycle, once further activated by redox-
derived DAMPs, may rapidly become self-sustaining and
self-amplifying and may well underlie the excessive levels
of nitro-oxidative stress and chronic immune activation seen
in patients with neuroinflammatory, neurodegenerative, and
autoimmune diseases [22]. It is also noteworthy that initial
inhibition of mitochondrial function by ROS/RNS provokes
the production of even higher levels of these entities creating a
spiral of self-amplifying and self-sustaining mitochondrial
dysfunction and bioenergetic failure [20, 29]. Microglia, once
activated, provoke the activation of astrocytes, and this
Bdance^ can also develop into self-sustaining and self-
amplifying pathology [20]. The chronic dysregulation to the
immune system, following an initial infection, could explain
abnormal pathogen activity in certain individuals, and we now
turn to a review of a number of pathogens seen active in
people with apparently idiopathic fatigue, with an emphasis
on the mechanisms by which they could produce chronic in-
tractable fatigue accompanied by profound physical and cog-
nitive disability. We shall comment on the role of polymor-
phisms in individual susceptibility to infection and disease
trajectory in each case where data exists. We shall also com-
ment on the capacity of each organism to affect the function of
p53, given that interference with this transcription factor is a
common replicative strategy, and that p53 plays a major role
in the regulation of energy production at the basal level and in
situations of increased energy demand [30]. The reader is
referred to the work of Morris and Maes (2012) for a detailed
explanation of the mechanisms underpinning the role of p53
in the generation and regulation of energy production [31].

Epstein-Barr Virus

Numerous research teams have described a chronic illness,
normally preceded by severe symptoms of infectious mono-
nucleosis. It is characterized by the presence of chronic or
intermittent fever, lymph node tenderness or pain, unrelenting
severe fatigue, sore throat, myalgia, headache and arthralgia
without any sign of a clearly delineated underlying disease.
This illness is called chronic activated Epstein-Barr virus syn-
drome (CAEBV) [32–35]. CAEBV is an illness where pa-
tients complain of severe fatigue. The symptoms of infectious
mononucleosis including swollen lymph nodes, malaise and
fever may persist for over 3 months. These symptoms persist
due to an unusual pattern of latent Epstein-Barr virus (EBV)
infection. EBV generally establishes a latent pattern of infec-
tion in B cells, which in many cases progresses asymptomat-
ically, but is also capable of invoking numerous diseases
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depending on the overall pattern involved in latency. In the
case of CAEBV, however, EBV establishes a latent infection
in NK cells and Tcells, inducing the gene expression of active
virus [36]. Interestingly, patients suffering from this illness
commonly suffer a wide range of cardiovascular and neuro-
logical abnormalities, which is not typical of EBV infections
as a whole [34, 35]. CAEBVis held to be a known cause of the
symptom complex often described by a diagnosis of CFS.
However, as a result of a Bsemantic strait-jacket^ inserted into
current CDC selection criteria, someone whose symptoms
have a known cause cannot be classified as suffering from
CFS [3, 37–39]. EBV was considered as one of the causes
of an outbreak of an illness, historically described as myalgic
encephalomyelitis (ME),which occurred in different geo-
graphical locations in the mid 1980s, when it was noted that
some patients displayed high antibody titers to EBV [40]. A
CDC committee later coined the term CFS to describe the core
symptoms displayed by such patients and created the first
entirely symptom-based case description [3]. At that point in
time, however, patients with EBVinfection, displaying similar
symptoms to those displayed by patients in the outbreaks,
were categorized under the diagnostic heading of CAEBV
[41, 42]. However, when patients in later studies, who satis-
fied the requirements of that case description and thus were
afforded a diagnosis of chronic fatigue syndrome, failed to
display elevated tires to EBV, a consensus position developed
that chronic EBV syndrome (CEBVS) and other EBV infec-
tious diseases other than CAEBV were not related to the out-
breaks or indeed causatively implicated in the production of
the CFS symptom complex [43, 44].

The clinical characteristics of severe CAEBV infection
are attributable to an immune-inflammatory response char-
acterized by increased levels of pro-inflammatory cyto-
kines, IL-10, and macrophage-colony-stimulating factor.
Documented cases of CAEBV infection other than from
Japan are rare, potentially suggesting that the illness re-
mains underdiagnosed in other countries [45, 46]. Patients
suffering from CAEBV commonly display antibodies di-
rected at EBVearly antigen, potentially indicating the pres-
ence of reactivated EBV [38]. CAEBV disease normally
follows prolonged infectious mononucleosis in people with
no apparent immunosuppression.

Several decision trees have been mooted for the diagnosis of
the illness [35, 47]. The striking feature of disease involves
infection of T and NK cells by EBV, but B cells which are the
normal targets of EBVare invariably free of the virus in people
with this illness. Many patients are serologically silent and thus
high antibody titers are not a mandatory diagnostic feature [46].
Defects in EBV-specific cytotoxic T cell activity or natural
killer activity aimed at cells infected with EBV have been re-
ported by a number of research teams [48, 49]. The American
experience of this illness in the work of Cohen et al. including
patient responses to rituximab is well documented [50].

The diagnosis of the illness, once such a matter of contro-
versy, has improved immeasurably with the advent of molec-
ular diagnostic protocols involving new techniques [35, 37,
51]. Viral loads of some 102 five copies per microgram can be
commonly detected in PMBCs [52, 53]. The pathophysiology
appears linked to abnormalities in the lytic cycle, and abnor-
mal proliferation of infected cells. Studies investigating vari-
ation in the genes governing the lytic cycle show the potential
to expose the pathophysiology in more detail [54]. Variants
with changes in EBV nuclear antigens (EBNA)-1 and EBNA-
2 or lytic membrane protein have been detected in patients
with CAEBV [35, 37, 51]. For a more detailed treatment of
abnormalities in the replicative cycle and gene expression in
CAEBV, the reader is referred to [35]. The continual produc-
tion of pro-inflammatory cytokines in this syndrome is in
direct contrast to the situation when EBVinfects B cells, either
acutely or following the establishment of a latent infection.

EBV nuclear antigen 1 induces production of ROS, thereby
contributing to the development of oxidative stress [55, 56].
The production of the BZLF-1 (Zta, ZEBRA) immediate and
early proteins upon entry of EBV into the lytic cycle leads to
the depletion of mitochondrial membrane potential, dramatic
changes in mitochondrial morphology, and inhibits mitochon-
drial replication [57, 58]. A range of EBV proteins, e.g.,
BZLF-1, inhibit the transcriptional activity of p53 via a number
of different mechanisms, including the accelerated degradation
of the phosphorylated transcription factor, and the induction of
a range of detrimental post-translational modifications
[59–61]. EBVmay infect the brain, and EBV-related infections
of the central nervous system (CNS) can be initiated by active
or reactivated virus or by chronic viral infection [62, 63].

EBV is the virus most commonly implicated in the devel-
opment of multiple sclerosis (MS), and it was recently
established that latent EBV can induce a range of innate im-
mune responses, e.g., IFNγ production, and drive neuroin-
flammation in active MS [64]. This neuroinflammation and
pattern of immune activation may be exacerbated by the reac-
tivation of the MS Retrovirus (MSRV), whose envelope pro-
tein can engage with TLR4 receptors on immune cells in the
brain [65]. Activation of TLR4 by MSRV envelope leads to
the production of pro-inflammatory cytokines and the induc-
tion of nitrosative stress, which results, among other things, in
a significant reduction in the capacity of oligodendrocytes to
differentiate, impeding their ability to facilitate re-myelination
[66]. The ability of EBV to reactivate MSRV is regarded by
many as one of themajor reasons why the association between
the presence of EBVand the development of MS is so strong
[67]. Functional polymorphisms in the gene complex respon-
sible for the production of IL-1∃ and IL-12 regulate both
individual susceptibility to EBV infection and illness trajecto-
ry [68, 69]. It is also worthy of note that reactivation of EBV,
even if present at a very low titer, leads to the excessive pro-
duction of inflammatory cytokines and resultant widespread
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inflammation provoked by the presence of dUTPase, one of
the early proteins produced by the replicating virus [70].

Human Herpes Virus

HHV6A andHHV6B are indirectly or directly associated with
neurological diseases either via de novo infection in otherwise
healthy children, or as a result of reactivation in immunocom-
petent adults [71, 72]. The weight of evidence indicates that
HHV6 is a causative agent in immune-competent adults, as
IgM to the virus is often found in such circumstances [73, 74].
Both strains of HHV6 are also strongly implicated in the path-
ogenesis of idiopathic encephalitis [72, 75]. HHV6A and B
and have been proposed as putative causal or con-causal
agents in numerous inflammatory diseases commonly associ-
ated with pathological levels of fatigue, such as Sjögren’s
syndrome [76, 77], systemic lupus erythematosus (SLE) [78,
79], and rheumatoid arthritis [78, 79]. There is also a body of
research indicating that HHV6 plays a role in the pathogenesis
of multiple sclerosis. The possibility that viral activity is
caused by immunomodulatory medication is remote in light
of evidence that HHV6 is detected in the activated astrocytes
and microglia of acutely diagnosed treatment-naive patients
[80]. HHV6 titers are significantly higher in patients suffering
acute flare up of disease and, intriguingly, only HHV6A de-
tected in such circumstances, but both serotypes are detected
in patients in remission. In contrast, studies report that only
HHV6B is present in healthy controls [81]. It is also worthy of
note that HHV6 reactivation, as measured by the number of
gadolinium-enhancing lesions, correlates significantly and
positively with longitudinal changes in disease activity [82].
Finally, there is also accumulating evidence that HHV6A and/
or HHV6 infection plays a major role in the pathology en-
dured by many people with apparently idiopathic fatigue, ac-
companied by profound multidimensional pathology afforded
the non- specific diagnosis of CFS. In numerous studies, the
virus has been detected in patients so diagnosed at significant-
ly higher levels than healthy controls [83–85]. Ablashi and
fellow workers reported elevated IgM levels in CFS patients
as compared to controls and elevated levels of antibody to
HHV6 early antigen in 54 % of patients compared to 8 % of
healthy controls [86]. This echoes findings reported by anoth-
er research group [87].

Some studies have suggested that both viruses can induce a
T helper (Th)2 profile in Tcells through the inhibition of IL-12
secretion by dendritic cells (DCs), and macrophages and
through the induction of IL-10 production [88]. In contradic-
tion, other reports have shown that HHV6 infection up-
regulates the levels of pro-inflammatory cytokines, such as
IL-1β, TNFα, and IFNγ in peripheral blood mononuclear
cells [89, 90]. The latter effects may well explain why
HHV6 infections are associated with dramatically elevated

cellular levels of oxidative stress [91]. A combination of ele-
vated inflammatory cytokines and oxidative stress induces
mitochondrial dysfunction [29]. HHV6 is also capable of in-
ducing mitochondrial dysfunction and impaired energy me-
tabolism in other ways. For example, HHV6 early proteins
interact with other proteins, leading to a reduction in mito-
chondrial membrane potential [92]. HHV6 can also inhibit
mitochondrial function via increased levels of B cell lympho-
ma 2 (Bcl-2)-associatedX protein (BAX) and decreased levels
of Bcl-2 [93].

HHV6 also interferes with the p53 network. In particular, a
HHV6 protein produced during infection leads to the accumu-
lation of p53 in the cytoplasm, inhibiting its transcriptional
activity and hence any positive modulation of cellular energy
production [94, 95]. While the ability to infect and alter the
proliferation and cytokine secretion pattern of T lymphocytes
is well documented, it must be emphasized that both HHV6
strains can also establish active or latent infections in the brain
[96]. HHV6A in particular can establish active infections in
astrocytes and oligodendrocytes [97, 98], and is far more ef-
ficient in doing so than HHV6B [96]. HHV6A can induce or
increase cytokine production in astrocytes via binding to the
cytosolic TLR9 receptor [99] and very likely the membrane
receptors TLR2 and TLR4 [96]. There is no direct evidence
that HHV6 infection can lead to increased intestinal barrier
permeability, but intriguingly, its presence has been detected
in gut biopsies taken from patients with a CFS diagnosis at
levels far higher than those present in healthy controls [100].

Functional polymorphisms in TLR9 receptors, which are
activated following Herpes virus infections, lead to a signifi-
cantly higher expression in the receptors in female MS pa-
tients compared to those who were polymorphism free
[101]. Reactivation of HHV6, even in immunocompetent in-
dividuals, leads to dysregulation within signaling pathways
governing the innate immune response, and increased levels
of neuropathology [96]. The specificity and sensitivity of re-
cent serology assays for the presence of IgG and IgM antibod-
ies to HHV6 in the blood compartment are high [102], and the
presence of HHV6 can readily be detected by nested polymer-
ase chain reaction (PCR) following culture of peripheral
mononuclear blood cells extracted from an infected patient.
The most recent assays can discriminate between DNA from
actively replicating HHV6A and that from chromosomally
integrated virus [103]. However, due to the neurotropism of
the virus, a negative result for either serology or PCR carried
out in any blood compartment cannot rule out the presence of
HHV6A or HHV6B in the brain [96].

Parvoviridae

Parvovirus infections in general, and Parvo B19 infections in
particular, are not merely acute and self-limiting as once
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thought, but almost invariably lead to long-term, and probably
lifelong, viral persistence in the bone marrow, lymphoid tis-
sue, and the brain, even in the absence of overt viraemia
[104–106]. Parvoviridae also display an almost bewildering
level of genetic diversity with a base rate substitution rate, per
site per year, rivaling that of HIVand other RNAviruses [107,
108]. The genetic variability displayed by Parvo B19 has
prompted the taxonomic division into four genotypes. Curi-
ously, while all four genotypes are routinely found in tissues,
the same is not true of circulating virus, which displays far less
genetic diversity. The presence of all four genotypes in tissues
and the extensive genetic diversity displayed by each geno-
type, means that the long-term persistence of Parvo B19 in
various cellular types, is characterized by the presence of ge-
netically labile quasispecies [104, 105, 109, 110]. Pathological
levels of fatigue are experienced by people who display evi-
dence of acute or chronic Parvovirus B12 infection [111–113].
The presence of elevated levels of pro-inflammatory cytokines
in the blood of many chronically infected people [113, 114] is
indicative of a state of chronic inflammation.

The presence of nonstructural protein (NS)1 and B19 pro-
teins lead to the up-regulation of nuclear factor-6B (NF-6B)
reactive oxygen species and inflammatory cytokines by acti-
vating a range of TLRs including TLR9, TLR7, and TLR4
[115, 116]. It is probable that TLR9 is responsible for detect-
ing B19 proteins during initial infection [117]. Nonstructural
protein (NS1) also increases the transcription of the TNFα and
IL-6 genes directly, up-regulates the production of STAT-3,
and down-regulates the expression of several genes involved
in the immune response [118]. Elevated levels of STAT-3 lead
to the down-regulation of p53 [31] and hence, this may be a
mechanism, by which B19 compromises the regulation of
energy production within infected cells. The presence of
NS1 leads to mitochondrial depolarization and elevated ROS
production, which persists throughout the period of infection
[119, 120]. There is also evidence of decreased mitochondrial
numbers in infected cells [121], which may reflect the fact that
the survival of B19-infected cells is enabled by increased mi-
tochondrial autophagy [122].

There is an accumulating body of evidence demonstrating
an association between Parvovirus B19 infections with the
development of a wide variety of neurologic manifestation,
including Guillain-Barre syndrome [123]. It is not clear
whether the interaction of the Parvovirus with the central ner-
vous system (CNS) is due to direct infection or as a result of
autoimmune processes [124]. Douvoyiannis and colleagues
reported on the presence of Parvovirus B19 in a cohort of
patients with a range of neurological conditions, which likely
stemmed from infection by this virus. Parvovirus B19 DNA
was detected in the cerebrospinal fluid (CSF) in 81 % of pa-
tients, and the serum in 85 % of patients. Specific antibodies,
however, were only detected in 33 % of CSF samples. Inter-
estingly, there were no differences in the prevalence (25 %) of

neurological sequelae between immunocompetent patients,
and those with altered immunity [125]. There is also evidence
that functional polymorphisms in the genes coding for IFNγ
and transforming growth factor β1 (TGF-β1) are associated
with a greater likelihood of developing symptoms following
Parvovirus B19 infection [113]. Current serology assays have
a high sensitivity and specificity to the presence of the VP2
structural protein of parvovirus in blood compartments [102].
In similar vein, B19 DNA can readily be detected by PCR
following culture of PMBCs extracted from infected people
[103]. However, there is a caveat, as B19 DNA can be detect-
ed in tissue by PCR, when examination of any blood compart-
ment is negative [102].

Mycoplasma

Many people infected with a range of mycoplasma species
experience severe levels of fatigue [126, 127]. Mycoplasma
species induce an immune response via a number of different
mechanisms. The first involves engagement with the TLRs,
notably TLR2 [128–130], leading to the up-regulation of IL-
12, IFNγ and other pro-inflammatory cytokines [131, 132].
Interestingly, Mycoplasma species infection leads to the gen-
eration of a wide range of DAMPs including those normally
released following cellular necrosis [133]. Mycoplasma anti-
gens are also capable of activating the inflammasome [134,
135], with subsequent elevation of IL-1α, IL-18, and ROS
levels and a concomitant decline in the mitochondrial mem-
brane potential [136–138]. Elevated levels of ROS and oxida-
tive stress are an almost invariant finding in people infected by
Mycoplasma species [139]. Despite invoking such a powerful
immune response, and being such simple organisms, Myco-
plasma species can readily establish chronic infections in in-
fected hosts using a range of highly sophisticated immune
evasion strategies [140]. Broadly, these strategies are enabled
by an excessive rate of spontaneous mutations in the genes for
the production of a plethora of surface antigens and direct
invasion of peripheral mononuclear blood cells and erythro-
cytes. This is an extremely complex topic and the reader is
referred to the work of [140, 141] for details.

However, it is worth noting that a recent study bears graph-
ic testimony to the sophistication of the immune evasion
employed by this simple organism with the discovery of pro-
teinM [142]. This protein, produced by replicatingMycoplas-
ma species, binds indiscriminately to all antibodies and blocks
the union of antigen and antibody, which has been described
as the ultimate decoy system largely negating the specific
activity of the humoral response to Mycoplasma species
[142]. While host cell responses vary with stage of infection
[143], these evasion strategies enables Mycoplasma species to
establish persistent infections in non-phagocytic lysosomes
via endocytotic uptake [144]. The bacteria can also establish
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persistent infection in endothelial cells provoking the produc-
tion of pro-inflammatory cytokines, which are a source of
inflammation likely contributing, in part, to the development
of chronic oxidative stress [145]. The presence of DNA in
PMBCs in patients without any evidence of historical infec-
tion indicates widespread tissue dissemination following ini-
tial infection [146]. While mitochondrial depolarization and
elevated oxidative stress are established causes of incapacitat-
ing fatigue, Mycoplasma species also suppress the production
and activity of p53 as part of the replicative strategy [147,
148].

The brain is the second most common site ofMycoplasma
pneumoniae infection after the lungs [149] and evidence of
infection is readily detected by T2-weighted magnetic reso-
nance imaging (MRI) [150]. The organism is a known cause
of Guillain-Barre syndrome and encephalitis in adults and
children, likely via the secretion of a neurotoxin [149, 151].
A number of authors have also suggested a causative role in
some patients with Mycoplasma species especially in females
[152]. Finally, Nijs et al. reported that 68 % of patients
afforded a diagnosis of CFS were chronically infected with
at least oneMycoplasma species compared to 56% of controls
[127]. This finding was supported in a review of studies where
the author concluded that overall the data revealed that 50 %
of patients appear to be infected compared to 10 % of controls
[126]. Interestingly, a functional polymorphism in a gene cod-
ing for a vital component of the NALP-3 inflammasome con-
fers an increased risk of developing serious chronic pathology
following a Mycoplasma infection [153]. The detection of
Mycoplasma in PMBCs by PCR appears to be relatively
straightforward for Mycoplasma species infecting leucocytes
[146].

Cytomegalovirus

Human cytomegalovirus (HCMV) infection can cause severe
life-threatening pathology in immuno-compromised individ-
uals [154, 155]. However, HCMV invasion can also produce
debilitating symptoms, and sometimes progressive pathology
in immune-competent people [156, 157]. Such an infection
often gives rise to a relapsing mononucleosis type syndrome
characterized by severe fatigue, malaise, and myalgia [158,
159]. The presence of HCMV can provoke the transcription
of NF-ΚB and the subsequent production of pro-inflammatory
cytokines and IFNs, via the engagement of TLR2/4 and CD19
receptors [160, 161]. Polymorphisms in TLR2 appear to en-
hance an individual’s susceptibility to lytic infection and the
development of subsequent pathology [162]. Other authors
have reported that TLR polymorphisms or epigenetic changes
in the methylation state of their gene promoter regions influ-
ence the duration and magnitude of the immune response to
HCMV infection [163]. On the other hand, heterozygosity in

TLR2 and TLR4 receptors diminishes the risk of infection by
this virus in adults [164].

HCMV, like other Herpes viruses, has the capacity to es-
tablish persistent life-long infections [165]. Viral inhibition of
apoptosis appears to be the prime mechanism enabling this
persistence [166, 167]. This suppression of programmed death
pathways is probably mediated by the transcription of HCMV
encoded immediate early genes targeting the extrinsic path-
way [168] and the viral mitochondria localized inhibitor of
apoptosis protein targeting the intrinsic pathway [169]. How-
ever, viral-induced programmed cell death is a prerequisite for
the transmission of progeny virus and is also the prime cause
of HCMV-induced pathology [170, 171]. There is evidence
that the protein US28 facilitates this pro-apoptotic property of
HCMV [172]. Patients infected with HCMV display a re-
duced T cell response to mitogens and a number of antigens
and reduced natural killer activity [173, 174]. HCMV ex-
presses several homologues for a number of chemokines and
IL-10 as part of an evolutionary conserved strategy for inter-
fering with and avoiding the hosts’ immune system [175,
176].

This immune evasion strategy is further evidenced by the
virus’s ability to suppress the maturation and differentiation of
DCs and inhibit their capability to stimulate the proliferative
and cytotoxic properties of T lymphocytes and their migration
in response to geographically elevated levels of chemokines
[177–179]. HCMV infection results in a number of effects on
host mitochondria including increased mitochondrial biogen-
esis and an increase in mitochondrial activity [180]. Cellular
invasion by the virus leads to significant changes to the pro-
teins mediating contact between the endoplasmic reticulum
and mitochondria, coupled with increased calcium signaling
to the organelle with the aim of up-regulating bioenergetics
performance to maximize the production of progeny [181].
However, HCMV invasion induces mitochondrial fragmenta-
tion in non-permissive cells [182].

Moreover, infection of leucocytes by the virus results in
oxidative damage to mitochondrial DNA and the develop-
ment of systemic oxidative stress [183]. The development
of oxidative stress and chronic inflammation following
HCMV infection is an important mechanism driving the
development of pathology [184]. In line with that view,
there is strong evidence that the products of lipid peroxi-
dation up-regulate the promoter region of the virus [185].
HCMV has a number of positive effects on cellular antiox-
idant defense systems, presumably evolved to maintain
host cell viability. One such effect is the up-regulation of
nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf-2)
and Haem oxygenase, which in turn can activate the glu-
tathione and thioredoxin systems [186]. Viral invasion
leads to a virtually immediate up-regulation of cellular
ROS and hydrogen peroxide production, which prevents
the inhibition of the mechanistic mammalian target of
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rapamycin protein (mTOR) and provokes the up-regulation
of reduced glutathione [187].

p53 promotes the efficient transcription of HCMV genes,
but this is at the cost of a loss of ability to initiate or regulate
the activity of host genes likely via its sequestration in the
cytoplasm [188]. This sequestration is effected via the binding
of HCMV early proteins pUL29 and UL28, which adversely
affects the ubiquitin status of the transcription factor [189].
The infection of primary brain pericytes results in the acceler-
ated production of viral progeny and is a major contributor to
the development of neuroinflammation and potentially frank
encephalitis [190]. Another likely contribution to the develop-
ment of neuropathology stems from the virus’s ability to es-
tablish a productive infection in astrocytes and provoke de-
fensive actions from microglia [191, 192]. The pattern of che-
mokine and cytokine production by astrocytes and microglia
differs following infection, with astrocytes secreting many
chemokines and microglia mainly secret ing pro-
inflammatory cytokines [192]. One such chemokine secreted
by infected astrocytes is TGF-β1, which acts to stimulate the
replication of HCMV [191]. Replication of the virus is indi-
rectly involved in the pathogenesis of Guillain-Barre syn-
drome, which uncommonly results from primary HCMV in-
fection or endogenous reactivation in immune-competent
middle-aged or older adults [193, 194]. HCMV reactivation
in patients with intact T cell function but abnormalities in
innate immune activity provokes an exaggerated and persis-
tent immune and inflammatory response associated with the
development or exacerbation of disease [195]. The detection
of replicating virus, following culture of host PMBCs, is read-
ily achieved by PCR, with primers targeting the detection of
early replicating proteins [196].

Borrelia burgdorferi

Severe intractable fatigue accompanied by profound physical
and or cognitive impairment is a common presentation in pa-
tients with a laboratory confirmed infection of B. burgdorferi
(Bf) even many years after apparently successful antibiotic
treatment [197–199]. Other symptoms include a recurrent
flu-like malaise, low-grade fever, and myalgia [200]. The spi-
rochete employs a number of immune evasion strategies,
which aid the establishment of a persistent infection, including
antigenic variation, the production of complement inhibiting,
or complement resistant proteins and the secretion of a prote-
ase, enabling its localization in Bsanctuary sites^ in the extra-
cellular matrix [201, 202]. It is not surprising therefore that Bf
infection stimulates the production of a range of chemokines
and cytokines by macrophages including IL-8, IL-10, TNFα,
IL-6, and IL-1β, leading to the generation of systemic inflam-
mation, largely independent of the activation of the comple-
ment system [203, 204]. Bf-mediated immune activation and

inflammation is effected by spirochete LPS engagement with
TLR2 and TLR4 [205]. The type of receptor engaged appears
to vary somewhat with immune cell type as the production of
cytokines and chemokines by surface engagement of LPS
with human monocytes is affected solely via the TLR-2
MYD88 pathway [206]. Moreover, the range of inflammatory
mediators produced via phagocytic internalization of Bf by
monocytes is affected via the activation of the cytosolic
TLR8 receptor [207]. It is also worthy of note that Bf RNA
is also antigenic and provokes the production of types I, II, and
III IFNs as well as the synthesis of NF-κB dependent pro-
inflammatory cytokines via the activation of the TLR7 recep-
tor [208].

It is of interest that the degree of innate immune stimulation
following monocyte ingestion is much greater for live Bf than
heat-killed isolates. Additionally, in vivo infection depletes
monocyte number via apoptosis in a titre-dependent fashion
[209]. The internalization and subsequent degradation within
the phagosomal compartments of macrophages, monocytes,
and dendritic cells of Bf enables the release of spirochete
nucleic acid and a range of other microbial products such as
LPS, which can provoke a widespread and powerful inflam-
matory response [210]. Testimony to the presence of a chronic
inflammatory environment is borne by the presence of MDA,
4-HNE, and isoprostane in the CSF, urine, and encephalic
fluid [211]. High serum levels of nitric oxide and nitrotyrosine
indicate excessive levels of protein nitration and lipid perox-
idation in patients with neuroborreliasis, which act to amplify
the underlying inflammatory processes in patients suffering
from this illness [212, 213]. It is also worth noting that a range
of prostaglandin metabolites including 8-iso prostaglandin
(PG)F2 display an eightfold increase in the urine of infected
people compared to healthy controls. Curiously, we have been
unable to locate any research specifically investigating the
effects of Bf infection on mitochondrial dysfunction and we
are not aware that any such research has ever been conducted.
However, given the magnitude of chronic inflammation in-
duced by the presence of this spirochete mitochondrial dys-
function secondary to the presence of such an environment is
very likely to occur [20].

The provocation of an inflammatory response is also the
mechanism by which Bf induces severe neuropathology in
some 20 % of chronically infected people. Entry into the
CSF following the establishment of a chronic infection is like-
ly established via routes that do not involve the blood. Once
present, the spirochete provokes a powerful inflammatory re-
sponse [201, 214]. This response involves the secretion of
nitric oxide together with pro-inflammatory cytokines and
chemokines from macrophages, monocytes, and DCs, with
the secreted chemokines acting to summon the invasion of B
lymphocytes and activated CD8+ T cells [201]. Whether the
spirochete transverses the blood–brain barrier and enters the
brain by a transcellular route or via endothelial cell junctions is
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still a matter of debate, but once present, inflammation and
apoptosis of oligodendrocytes is effected by direct activation
of MAPK kinases, notably extracellular signal-regulated ki-
nase (ERK), with the concomitant up-regulation of p53-
governed pathways [215]. The interaction of primary brain
parenchymal cells with the spirochete provokes the release
of IL-6, IL-8, TNFα, and cyclooxygenase 2 (COX-2) from
glial cells, as well as inducing glial and neuronal apoptosis
[216]. It is also noteworthy that Bf infection induces cellular
apoptosis in the dorsal root ganglion [217]. Activation of mi-
croglia by engagement of TLR1, TLR2, and CD19 on the
surface of these glial cells is another major source of
neuroinflammatory mediators such as NF-κB, PGE2, pro-
inflammatory cytokines, and IL-6, whose chronic presence
leads to neuronal apoptosis and the elevation of p53 [218,
219].

Finally, there is now considerable evidence of the presence
of persistent, cystic, or atypical granular or rolled Bf, which
acts as a highly localized source of extracellular or intracellu-
lar neuroinflammation [220]. Evidence that polymorphisms in
immune genes could protect the bearer from the development
of long-term pathology following Bf infection was provided
in a study by Schroder et al. who reported that a polymor-
phism in the TLR2 receptor gene impaired immune activation
by the spirochete and reduced the risk of developing chronic
neuroborreliosis [200].

The most recent third-generation serology assays appear to
have a greater sensitivity for the detection of Bf in the CSF
than earlier methodology [221]. However, the tendency to test
such assays in patients with Lyme disease without the con-
firmed presence of Bf or a sole focus on antigens, only pro-
duced by an actively replicating spirochete, makes the reliabil-
ity of such assays very difficult to assess [221]. The low levels
of circulating spirochete in the blood make its detection in this
compartment by PCR a challenge [222]. However, the use of
DNA amplification strategies and amulti-locus PCR approach
combined with mass spectroscopy appears to have the sensi-
tivity needed to reliably detect the presence of Bf in that com-
partment if present [222]. However, at present, there is no
validated PCR method for the detection of Bf putatively pres-
ent in the blood or CSF in patients with any recall of a histor-
ical tick bite but displaying clinical symptoms of
neuroborreliosis. The absence of any PCR or serological assay
with the capacity to detect the presence of Bf in patients
displaying the clinical symptoms of neuroborreliosis is highly
problematic as there is now overwhelming evidence demon-
strating that Bf establishes a persistent infection in the brain
(reviewed in [223]). PCR assays on frontal lobe tissue are
capable of revealing the presence of Bf DNA but are invasive
procedures [223]. Other options for detection involve culture,
electron microscopy, and direct microscopy of tissue biopsies
but these are of little clinical utility [200]. Oligoclonal bands
in the CSF of infected people onMRI examination, which can

confuse a diagnosis ofMS, would suggest the use of this mode
of examination as an invaluable diagnostic aid [200].

Chronic Mold and Mycotoxin Exposure

People with a documented history of chronic mold exposure
can display a wider range of symptoms, which include severe
fatigue, malaise, and severe neurocognitive impairment,
which appear to be related to the length of exposure
[224–226]. The origin of the symptoms has been a matter of
some controversy. It was initially held that such signs and
symptoms could not be due to inhalation of fungal spores.
These matters are reviewed in the work of Hope [227]. How-
ever, the focus of research appears to have changed from the
potential toxicity caused by the inhalation of viable fungal
spores, to a study of the pathogenic potential of
nanoparticulate fragments of hyphae and conidia coated with
mycotoxins such as the trichothecenes family [228–231].
There is now robust evidence demonstrating that these parti-
cles can be released at some 300 times the concentration of
spores and that the viable spore count is in no way predictive
of their levels [232]. There is also evidence demonstrating that
nanoparticulate Stachybotrys chartarum (SC) fragments can
be aerosolized at approximately 500 times greater levels than
spores. T2 mycotoxins inhalation is more toxic than systemic
or dermal administrations [233]. Several studies illustrate the
aerosolized mycotoxins. For example, subjects chronically
exposed to SC in an indoor environment have significant more
trichothecenes in the sera than controls [234]. Trichothecene
mycotoxins are routinely detected in the air of buildings con-
taminated by SC [229].

A number of fungi produce trichothecenes mycotoxins in-
cluding Stachybotrys and Fusarium [235]. Trichothecene my-
cotoxins cause multisystemic effects including nervous disor-
ders, cardiovascular alterations, and immunosuppression
[236]. A study investigating Satratoxin A exposure demon-
strated that the toxin produces neuropathology at levels that
occur in water-damaged buildings [237]. Trichothecenes and
many other mycotoxins can bind to ribosome subunits gener-
ating Bribotoxic stress^which leads to the p38, c-Jun N-termi-
nal kinase (JNK), ERK, and MAPK activation [238–240].
This mycotoxin-induced activation of MAPK mediates in-
creased levels of pro-inflammatory cytokines and, in certain
circumstances, cellular apoptosis [241–243].

Patients subjected to chronic mold exposure develop a
wide range of immune abnormalities, including inflammatory
responses. These abnormalities include increased levels of
CD19+B, CD20+B, CD8+T, and CD4+T cells [244, 245].
Other abnormalities include elevated numbers of natural killer
cells that have reduced killing capability [244, 245]. Such
patients also display an elevated CD4/CD8 ratio and T and
B cell responses to mitogenic stimulation, which can be
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suppressed, elevated, or grossly elevated [246]. People suffer-
ing from chronic mold exposure also display a range of auto-
antibodies that generate a range of substances associated with
muscle damage and can also activate the classical complement
pathway [245–247]. Exposure to mold antigens and toxins,
frequently found in the air in water-damaged buildings, are a
well-documented source of inflammation, oxidative stress,
and subsequent inflammatory reactions in animal and human
studies [248–253]. Oxidative stress, indexed by elevated
ROS/RNS is a significant mechanism underpinning the devel-
opment of pathology [251, 254–256]. It is also worthy of note
that inflammation, initially generated by chronic mold expo-
sure, appears to play a major role in illness even after exposure
to water-damaged, mold-rich, environments is terminated
[252, 253, 257]. Numerous studies also report the existence
of mitochondrial damage and compromised bioenergetic
function in people subjected to chronic mold exposure [246,
258, 259]. Elevated levels of ROS/RNS are likely to be partly
responsible for the existence of mitochondrial pathology, but
various mycotoxins can compromise the function of these
organelles directly by a range of mechanisms involving inhi-
bition of translation, promotion of calcium dyshomeostasis,
inhibition of mitochondrial membrane potential, and
inhibiting the transcription of cytochrome oxidase and re-
duced nicotinamide adenine dinucleotide (NADH) dehydro-
genase [250, 260, 261]. Individuals with a documented history
of chronic mold exposure also display a wide range of im-
mune abnormalities.

Inflammatory responses following mold exposure or infec-
tion can bemediated via engagement of TLR4 or TLR2 [262].
There is also considerable evidence that polymorphisms in
TLR4 or other immune cell receptors makes an individual
more susceptible to mold-induced pathology [262, 263]. Im-
mune activation following mold exposure can also be medi-
ated by TLR9 [264]. Engagement of these receptors on den-
dritic cells following aerial exposure to SC can lead to in-
creased IFN (production by activated Th1 cells [265]). How-
ever, in other tissues, activation of these receptors by SC leads
to the production of IL-23 and IL-17 and the development of
pathogenic Th17 cells [265]. Other mycotoxins such as afla-
toxin increase the production of forkhead box P3 (FoxP3) and
regulatory T cells and promote a T helper 2 (Th2)-biased im-
mune system [266].

Chronic exposure to mycotoxins may cause injury to the
gastrointestinal tract [236, 250]. For example, vomitoxin
(deoxynivalenol or DON) provokes intestinal inflammation
in vivo [267], and its presence drives the immune system in
the intestine toward a Th17 bias involving the presence of the
pathogenic group of activated Th17 cells [268, 269]. Ingestion
of this toxin induces significant increases in the levels of pro-
inflammatory cytokines and chemokines, e.g., IL-8, IL-1β,
TNFα, and IL-6 [270, 271]. DON activates ERK1/2 thereby
activating MAPK signaling cascades that consequently up-

regulate COX-2, NF-κB, and PGE-2 which are major drivers
of the inflammatory response [241, 268, 272]. DON also sig-
nificantly induces the expression of several genes that play a
role in driving the differentiation of Th17 cells including sig-
nal transducer and activator of transcription 3 (STAT3), IL-
17A, and suppresses the production of T regulatory cells and
the transcription of FoxP3 [269]. Furthermore, this trichothe-
cene stimulates IL-23A, IL-22, and IL-21 production at the
expense of IL-10 producing Th17 lymphocytes [269]. It is
also possible that the inflammation generated in intestinal ep-
ithelial cells could result in the activation of a population of
DCs and Th17 cells by eliciting communication with lympho-
cytes and antigen presenting cells situated in the lamina
propria, ultimately leading to the initiation of the classical
immune response [269].

One consequence of the production of pro-inflammatory
cytokines is the modulation of the intestinal tight junction
barrier, potentially favoring an increased translocation of lu-
minal antigens including commensal bacteria, a mechanism
that plays a role in some patients with chronic fatigue syn-
drome [273, 274]. DON exposure provokes increases in intes-
tinal permeability allowing passage of pathogenic and com-
mensal bacteria from the gut lumen into the systemic circula-
tion [275, 276]. This is caused by a suppressed transcription of
claudin hence impairing the effectiveness of endothelial tight
junctions [276, 277]. DON-induced MAPK and ERK activa-
tion suppresses claudin expression in a manner that correlates
with reduced intestinal barrier function [278]. It is noteworthy
that DON augments pro-inflammatory stimuli, such as TLR4
ligands on immune cells potentially providing an indirect
mode of pathogenicity [252, 279].

Individuals who have developed symptoms stemming from
chronic exposure to mycotoxins and mold particles may pres-
ent with Bclassical^ neurological abnormalities including
movement disorders, pain syndromes, neurocognitive defects,
and impaired coordination and balance [280]. Abnormalities
in standardized neurocognitive tests are also frequently appar-
ent [281, 282]. Disturbances of balance, a positive Romberg,
tandem gait, and computerized sway balance testing are com-
monplace [226, 282]. Interestingly, these symptoms often
worsen on repeated testing months or years following initial
mold exposure [226]. Exposure to mycotoxins and mold may
cause significant abnormalities in single-photon emission
computed tomography and quantitative electroencephalogram
testing [224, 281, 283]. Interestingly, intranasal glutathione
may improve neurocognitive symptoms stemming from expo-
sure to such environments [227].

There are a number of elements involved in driving such
neuropathology. T2 toxins bind to ribosomal subunits trigger-
ing ribotoxic stress activating JNK/MAPK [284]. This myco-
toxin also impedes membrane phospholipid metabolism pro-
ducing lipid peroxidation [285]. Chronic exposure, even at
very low levels, induces undesirable changes in brain
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monoamine turnover and the permeability of the blood–brain
barrier to amino acids [286, 287]. T2 toxins suppress the tran-
scription of enzymes in the detoxification of xenobiotics such
as glutathione transferases leading to dysfunctional mitochon-
dria [288, 289]. Dermal and subcutaneous exposure to these
trichothecenes leads to increased production of ROS, protein
carbonyls, lipid peroxidation, and depletion of reduced gluta-
thione [290]. This class of mycotoxin is also known to induce
increased permeability, or even frank disruption, of the blood–
brain barrier in animal subjects even at nanomolar concentra-
tions [291, 292]. Macrocyclic trichothecenes, such as those
produced by SC [293], can also activate p38, JNK, ERK,
and MAPK kinases simultaneously, once again via the induc-
tion of ribotoxic stress [239, 294]. When compared to T2
toxins, however, macrolytic thrichothecenes are up to a hun-
dred times more potent at activating MAPKs and inhibiting
the proliferation of leucocytes [250, 294].

Another mycotoxin found in the dust and air within water-
damaged buildings is ochratoxin A [295]. Chronic exposure to
this toxin leads to increased oxidative stress, with elevated
levels of lipid peroxidation and oxidative damage to DNA in
brain tissue in vivo [296, 297]. Furthermore, ochratoxin expo-
sure leads to mitochondrial impairment and bioenergetics
compromise and a secondary increase in the production of
ROS [296, 298]. Such diminished mitochondrial performance
is in part likely to be due to chronic oxidative stress, but the
toxin also inhibits complex 1 of the electron transport chain
and directly impairs mitochondrial membrane potential [299,
300]. It is also of interest that exposure to ochratoxin A pro-
vokes atypical responses in microglia and astrocytes
compromising their neuroprotective function and positively
promotes neuroinflammation via the up-regulation of for ex-
ample NF-κB [301, 302].

Fumonsin B1 is yet another mycotoxin found in the atmo-
sphere of water-damaged buildings with data demonstrating
neurotoxic properties [303]. These properties include the gen-
eration of oxidative stress and subsequent lipid peroxidation
and DNA damage within brain tissue [250]. This toxin also
appears to transverse the blood–brain barrier leading to the
activation of microglia and astrocytes with the subsequent
secretion of pro-inflammatory cytokines and other neurotoxic
substances [250].

Finally, we return to a consideration of specific macrocy-
clic trichothecenes produced by SC, in part because SC is the
organism most implicated in causing the neurological sequel-
ae seen in people with a history of chronic mold exposure, and
in part because these mycotoxins are known to produce neu-
rotoxicity in humans [227, 246, 270]. These mycotoxins are
known as Saratoxin G and Saratoxin H, respectively [250] and
we now turn to a consideration of their pathogenic capability.

Exposure to Saratoxin G, or its surrogate, produces apopto-
sis of sensory neurons leading to the olfactory bulb combined
with atrophy of that structure in animal subjects. Moreover,

the same animal subjects developed encephalitis accompanied
by chronically elevated levels of pro-inflammatory cytokines
in the frontal brain [304, 305]. Saratoxin H exposure leads to
the activation of MAPKs, JNK p38, and capase-3 together
with the predictable development of oxidative stress, in-
creased levels of reactive oxygen species, and the depletion
of reduced glutathione [250]. There is evidence that the con-
stant presence of Saratoxin H with subsequent self-amplifying
neuroinflammation and chronic immune activation renders an
individual more susceptible to the effects of other neurotoxic
species in the environment and more susceptible to the pres-
ence of such species in the environment thereafter [237, 306].
This would be consistent with evidence demonstrating tempo-
ral exacerbation of neurotoxicity via microglial priming [21].
There is also evidence that mycotoxins act synergistically, so
that a combination of mycotoxins could induce toxicity at
very low levels where a single mycotoxin would not [307].

There may, however, be additional elements underpinning
the development of neurological pathology in patients chron-
ically exposed to mycotoxins in water-damaged buildings.
LPS once again present at high concentrations in water-
damaged buildings potentiates trichothecene toxicity exacer-
bating any mycotoxin-induced damage [227, 308, 309]. Co-
exposure to otherwise sub-toxic doses of deoxynivalenol and
LPS significantly induces apoptosis in the thymus, Peyer’s
patches, and the bone marrow of laboratory animals via the
up-regulation of pro-inflammatory cytokine transcription
[305, 310]. Equally, bacterial translocation as a result of
mycotoxin-induced damage to the intestinal endothelium is
another source of LPS which is known to provoke neurotox-
icity and is the cause of chronic immune activation in patients
with HIV [311, 312]. Finally, the presence of nanoparticulate
matter in such environments may also be a source of neuro-
pathology per se whether coated in mycotoxins or not [313,
314]. These authors have demonstrated that such nanoparti-
cles passage into the brain via the olfactory epithelium and the
olfactory bulb lead to increased production of inducible nitric
oxide synthase (iNOS), NF-ΚB, and TNFα and the deposition
of beta amyloid plaques highly reminiscent of the pattern seen
in Alzheimer’s disease [314, 315]. These authors also reported
the results of a disturbing study examining the effects of the
polluted air of Mexico City on the brains of local children.
These children had clinically significant deficits on
neurocognitive testing, and over half displayed prefrontal
white matter hyperintense lesions indicative of chronic neuro-
inflammation [314] (Fig. 1).

Conclusion

It must be remembered that chronic fatigue syndrome is a
diagnostic label afforded to individuals with apparently idio-
pathic fatigue, with or without a few additional non-specific

Mol Neurobiol



symptoms, and such a diagnosis likely does not represent a
single disease entity with a unitary pathogenesis and patho-
physiology. Given that pathological levels of fatigue are not
even a mandatory requirement for most of the various selec-
tion criteria; the question of what causes CFS seems some-
what irrational and impossible to answer. The question of
what might be the cause of severe, apparently idiopathic, fa-
tigue together with profound levels of cognitive and or phys-
ical disability in an individual patient is a different matter,
however, as we now have an objective descriptor. The role
of functional polymorphisms in TLR or cytokine genes in
the genesis and maintenance of such a presentation appears
to be a promising avenue for research given that such genetic
abnormalities are known to influence an individual’s suscep-
tibility to infection, the severity and duration of the immune
response, and the development of chronic illness. Likewise,
the role of chronic inflammation and oxidative stress, in driv-
ing chronic immune activation via DAMP formation and the
consequent development of chronic illness, is well document-
ed. Hence, a mechanism exists whereby patients with a genet-
ic predisposition could go on to develop profound levels of
disability accompanied by severe intractable fatigue. Such pa-
tients would be expected to display objective markers of sys-
temic inflammation and elevated cytokine production. The

presence of persistent active or periodically reactivating path-
ogens would also be a very likely cause of this symptom
complex.

Active herpes virus infections are a well-known cause of
fatigue and disability. Very recent research has demonstrated
an increase in systemic inflammation and cytokine production
following reactivation of HCMVand HHV6 in immunocom-
petent patients leading to increase in disease severity and, in
the latter case, neuropathology. The reactivation of EBVeven
at very low levels is now known to provoke severe systemic
inflammation and contribute to the development of serious
pathology. Combined with the realization that this virus acts
as a source of inflammation and immune dysregulation even
in its latent state, this is likely to change the perception of EBV
as a benign passenger following initial illness. The absence of
active viral replication is no longer enough to dismiss the virus
as a source of a person’s symptoms. The presence of a persis-
tent Mycoplasma infection would also be a rational explana-
tion for the presence of disability and fatigue in any given
patient, but is only detectable if very precise protocols are
adhered to. The presence of Bf would also be an unproblem-
atic explanation, but detecting this spirochete in patients who
may have experienced these signs and symptoms for many
years remains a significant challenge. The existence of a
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Fig. 1 This figure shows the role of viruses, bacteria, and chronic fungal
biotoxin exposure in the genesis of intractable fatigue accompanied by
cognitive and physical disability. Different microorganisms and biotoxins
may activate the Toll-like receptor (TLR) cycle through pathogen-
associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs). Activation of the TLR cycle and other
mechanisms may cause central and/or peripheral activation of
intracellular signaling networks, e.g., nuclear factor (NF)-κB and
mitogen-activated protein kinase (MAPK), leading to induction of

cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS),
the production of pro-inflammatory cytokines, interleukin (IL)-1, IL-6,
interferons (IFN) and tumor necrosis factor (TNF)α, and reactive oxygen
and nitrogen species (ROS/RNS) leading to damage by oxidative and
nitrosative stress (O&NS). The above pathways may lead to
mitochondrial dysfunctions and alterations in p53, Bcl2 (B cell
lymphoma 2) and BAX (Bcl-2-associated X protein) functioning. It is
argued that these (and other changes discussed in the text) may induce
chronic fatigue
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persistent Parvovirus B19 infection with evidence of viral rep-
lication would also be a rational explanation for a patient’s
symptoms, but it may be present in tissues when absent in
blood. The capacity of this virus and the herpes viruses to
directly damage mitochondria and interfere with the biome-
chanics of p53 may well underpin their proven capability to
induce profound levels of fatigue and disability. Finally, and
perhaps somewhat paradoxically, a history of chronic mold
exposure as a source of such symptoms is now well docu-
mented, and the science explaining the mechanisms involved
is now increasingly delineated. This may also be the easiest
presentation to treat given the potential utility of intranasal
glutathione. In conclusion, the presence of any of the elements
discussed in this paper could easily drive the production of
severe fatigue and profound disability presented by any indi-
vidual patient. The current practice of affording a diagnosis of
chronic fatigue syndrome to such patients, if rudimentary tests
fail to disclose the origins of their symptoms, is likely unhelp-
ful and should, in our view, be discouraged.
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