• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of, and finding treatments for, complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia, long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

Sam-e ?

SaraM

Senior Member
Messages
526
Anybody taking Sam-e? I have started taking 400 mg in the morning for just 3 days and I cannot believe how much it is helping me with my fatigue ,brain fog and depression. This is the best supplement I have ever taken considering the fact that my CFS seems to be hormone related and inability to detox. I hope the effect will hold, and Sam-e can help other CFSers, too.Many thanks to Rich and other members.
 

Gavman

Senior Member
Messages
316
Location
Sydney
Good to hear. I'm not taking it, planning to as i come off effexor. Its so good when you find a nutrient/supplement that works for you, isn't it!
 

Sallysblooms

P.O.T.S. now SO MUCH BETTER!
Messages
1,768
Location
Southern USA
I am on a scheldule made by my doctores. I take 5HTP in the morning and eve. I take 200mg of SAMe in the afternoon. My Seratonin level is normal now. Works great for me.
 

SaraM

Senior Member
Messages
526
Gaveman
Medications always make my condition worse, and diet and supplements are the only things that help . In my case I have to be careful with supplements,too. When I take too much Mag at night, even Sam-e does not help next morning, and I wake up with a headache. Definitely give Sam-e a shot. It is worth it.Some people take as much as 1600 mg for depression.

Sally,
I really like your doctor's approach and think he is the one who might have the right answer for my specific type of CFS. Tried 5HTP for a few days with no positive effect, but plan to go back on it again for a longer period.
 

Gavman

Senior Member
Messages
316
Location
Sydney
SaraM, i'm looking at S.A.D. and tyrosine. My intuition made me pick the one for dopamine, instead of serotonin, but i've been on a serotonin one so i hope it goes well. Will start small doses and see how it all pans out. I'm feeling pretty upbeat at the moment, meditating and with fixing up my cal/mag and sodium/potassium levels. Still getting good results with the Sam-e? Keep us posted.
 

SaraM

Senior Member
Messages
526
Gaveman, I tried Levodopa before Sam-e and felt no positive effect. 500 mg of tyrosine caused thyroid pain,but I may try a lower dose later. Sam-e is still helping, but as a woman I still need to find something to control hormone fluctuations .
 

Nielk

Senior Member
Messages
6,970
I am on a scheldule made by my doctores. I take 5HTP in the morning and eve. I take 200mg of SAMe in the afternoon. My Seratonin level is normal now. Works great for me.

I was wondering what type of doctors do you see?
 

Sallysblooms

P.O.T.S. now SO MUCH BETTER!
Messages
1,768
Location
Southern USA
I was wondering what type of doctors do you see?

I see integrative MD's. One is the Dzugan Method, Dr. Sergey Dzugan. You can google him. Amazing people. If all docs were like these, more people would feel so much better or even be well. Depending on the health problems of course. I have not had a migraine since starting with Dzugan.
 

richvank

Senior Member
Messages
2,732
Anybody taking Sam-e? I have started taking 400 mg in the morning for just 3 days and I cannot believe how much it is helping me with my fatigue ,brain fog and depression. This is the best supplement I have ever taken considering the fact that my CFS seems to be hormone related and inability to detox. I hope the effect will hold, and Sam-e can help other CFSers, too.Many thanks to Rich and other members.

Hi, SaraM.

The fact that supplementing SAMe helps you is a clue that your body has a methylation deficit. SAMe is the main supplier of methyl groups to over 200 reactions in the body. It is normally made in the methylation cycle. Most people who have ME/CFS who are tested are found to have a partial block in their methylation cycle. There is a non-drug treatment for it which helps over two-thirds of those who have a partial methylation cycle block. I suggest that you ask your physician or chiropracter to order the Health Diagnostics methylation pathways panel (contact and interpretive information below) and if you do turn out to have this partial block, the protocol I have suggested is also pasted below.

Best regards,

Rich

Methylation Pathways Panel

This panel will indicate whether a person has a partial methylation cycle block and/or glutathione depletion. I recommend that this panel be run before deciding whether to consider treatment for lifting the methylation cycle block. I am not associated with the lab that offers this panel.

The panel requires an order from a physician or a chiropractor. The best way to order the panel is by fax, on a clinicians letterhead.


Available from:

Health Diagnostics and Research Institute
540 Bordentown Avenue, Suite 2300
South Amboy, NJ 08879
USA
Phone: (732) 721-1234
Fax: (732) 525-3288

Lab Director: Elizabeth Valentine, M.D.

Dr. Tapan Audhya, Ph.D., is willing to help clinicians with interpretation of the panel by phone, or you can use the interpretive guide below:


May 19, 2011


Interpretation of Results of the Methylation Pathways Panel

by
Richard A. Van Konynenburg, Ph.D.
Independent Researcher
(richvank@aol.com)


Disclaimer: The Methylation Pathways Panel is offered by the European Laboratory of Nutrients in the Netherlands and the Health Diagnostics and Research Institute in New Jersey, USA. I am not affiliated with these laboratories, but have been a user of this panel, and have written these suggestions at the request of Tapan Audhya, Ph.D., Director of Research for the Health Diagnostics lab, for the benefit of physicians who may not be familiar with this panel. My suggestions for the interpretation of results of the panel are based on my study of the biochemistry involved, on my own experience with interpreting panel results as part of the analysis of a fairly large number of cases of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) over the past four years, and on discussion of some of the issues with Dr. Audhya. I am a researcher, not a licensed physician. Treatment decisions based on the results of applying this panel and its interpretation to individual cases are the responsibility of the treating physician.

Application: In addition to being useful in analyzing cases of ME/CFS, this panel can also be usefully applied to cases of autism and other disorders that involve abnormalities in glutathione, methylation and the folate metabolism.

The panel includes measurement of two forms of glutathione (reduced and oxidized), S-adenosylmethionine (SAMe), S-adenosylhomocysteine (SAH), adenosine, and seven folate derivatives.

According to Dr. Audhya (personal communication), the reference ranges shown on the lab reports for each of these metabolites were derived from measurements on at least 120 healthy male and female volunteer medical students from ages 20 to 40, non-smoking, and with no known chronic diseases. The reference ranges extend to plus and minus two standard deviations from the mean of these measurements.

Glutathione (reduced): This is a measurement of the concentration of the
chemically reduced (active) form of glutathione (abbreviated GSH) in the blood
plasma. The reference range is 3.8 to 5.5 micromoles per liter.

Glutathione plays many important roles in the biochemistry of the body, including serving as the basis of the antioxidant enzyme system, participating in the detoxication system, and supporting the cell-mediated immune response, all of which exhibit deficits in CFS. The level of GSH in the plasma is likely to be more reflective of tissue intracellular glutathione status than the more commonly and more easily measured red blood cell or (essentially equivalent) whole blood glutathione level, which is about three orders of magnitude greater, because red blood cells are normally net producers of glutathione. Also, knowledge of the level of the reduced form, as distinguished from total (reduced plus oxidized) glutathione, which is more commonly measured, is more diagnostic of the status of glutathione function.

In order to be able to approximate the in vivo level of reduced glutathione when blood samples must be shipped to a lab, it is necessary to include special enzyme inhibitors in the sample vials, and these are included in the test kit supplied by these two laboratories.

Most people with chronic fatigue syndrome (PWCs), but not all, are found to have values of GSH that are below the reference range*. This means that they are suffering from glutathione depletion. As they undergo treatment to lift the partial methylation cycle block, this value usually rises into the normal range over a period of a few months. I believe that this is very important, because
glutathione normally participates in the intracellular metabolism of vitamin B12, and if it is low, a functional deficiency of vitamin B12 results, and insufficient methylcobalamin is produced to support methionine synthase in the methylation cycle. In my view, this is the mechanism that causes the onset of ME/CFS. This functional deficiency is not detected in a conventional serum B12 test, but will produce elevated methylmalonate in a urine organic acids test. In my opinion, many of the abnormalities and symptoms in ME/CFS can be traced directly to glutathione depletion.

Anecdotal evidence suggests that PWCs who do not have glutathione depletion do have abnormalities in the function of one or more of the enzymes that make use of glutathione, i.e. the glutathione peroxidases and/or glutathione transferases. This may be due to genetic polymorphisms or DNA adducts on the genes that code for these enzymes, or in the case of some of the glutathione peroxidases, to a low selenium status.

Glutathione (oxidized): This is a measurement of the concentration
of the oxidized form of glutathione (abbreviated GSSG) in the blood
plasma. The reference range is 0.16 to 0.50 micromoles per liter.

Normally, oxidized glutathione in the cells is recycled back to reduced glutathione by glutathione reductase, an enzyme that requires vitamin B2 and NADPH. If this reaction is overwhelmed by oxidative stress, the cells export excess GSSG to the plasma. In some (but not all) PWCs, GSSG is elevated above the normal
range, and this represents oxidative stress. It is more common in CFS to see this level in the high-normal range. This value may increase slightly under initial treatment of a partial methylation cycle block.*

Ratio of Glutatione (reduced) to Glutathione (oxidized): This is not shown explicitly on the panel results, but can be calculated from them. It is a measure of the redox potential in the plasma, and reflects the state of the antioxidant system in the cells. The normal mean value is 14. PWCs often have a value slightly more than half this amount, indicating a state of glutathione depletion and oxidative stress. This ratio has been found to increase during treatment of a partial methylation cycle block.*

S-adenosymethionine (RBC): This is a measure of the concentration of S-adenosylmethionine (SAMe) in the red blood cells. The reference range is 221 to 256 micromoles per deciliter.

SAMe is produced in the methylation cycle and is the main supplier of methyl (CH3) groups for a large number of methylation reactions in the body, including the methylation of DNA and the biosynthesis of creatine, carnitine, coenzyme Q10, melatonin and epinephrine. This measurement is made in the red blood cells because the level there reflects an average over a longer time and is less vulnerable to fluctuations than is the plasma level of SAMe.

Most PWCs have values below the reference range, and treatment raises the value.* A low value for SAMe represents a low methylation capacity, and
in CFS, it usually appears to result from an inhibition or partial block of the enzyme methionine synthase in the methylation cycle. Many of the abnormalities in CFS can be tied to lack of sufficient methylation capacity.

S-adenosylhomocysteine (RBC): This is a measure of the
concentration of S-adenosylhomocysteine (SAH) in the red blood cells. The reference range is 38.0 to 49.0 micromoles per deciliter.

SAH is the product of the many methyltransferase reactions that utilize SAMe as a source of methyl groups. In CFS, its value ranges from below the reference range to above the reference range. Values appear to be converging toward the reference range with treatment.

Sum of SAM and SAH: When the sum of SAM and SAH is below about 268
micromoles per deciliter, it appears to suggest the presence of
upregulating polymorphisms in the cystathionine beta synthase (CBS)
enzyme, though this may not be true in every case. For those considering following the Yasko treatment program, this may be useful information.

Ratio of SAM to SAH: A ratio less than about 4.5 represents low
methylation capacity. Both the concentration of SAM and the ratio of
concentrations of SAM to SAH are important in determining the
methylation capacity, because they affect the rates of the methyltransferase reactions.

Adenosine: This is a measure of the concentration of adenosine in the
blood plasma. The reference range is 16.8 to 21.4 x 10(-8) molar.

Adenosine is a product of the reaction that converts SAH to homocysteine. It is also exported to the plasma when mitochondria develop a low energy charge, so that ATP drops down to ADP, AMP, and eventually, adenosine. Adenosine in the plasma is normally broken down to inosine by the enzyme adenosine deaminase.

In some PWCs adenosine is found to be high, in some it is low, and in some it is in the reference range. I don't yet understand what controls the adenosine level in these patients, and I suspect that there is more than one factor involved. In most PWCs who started with abnormal values, the adenosine level appears to be moving into the reference range with methylation cycle treatment, but more data are needed.

5-CH3-THF: This is a measure of the concentration of 5L-methyl
tetrahydrofolate in the blood plasma. The reference range is 8.4 to 72.6 nanomoles per liter.

This form of folate is present in natural foods, and is normally the most abundant form of folate in the blood plasma. It is the form that serves as a reactant for the enzyme methionine synthase, and is thus the important form for the methylation cycle. It is also the only form of folate that normally can enter the brain. Its only known reactions are the methionine synthase reaction and reaction with the oxidant peroxynitrite.

When there is a partial block in methionine synthase, 5L-CH3-THF drains from the cells into the blood plasma by the so-called methyl trap mechanism. As other forms of folate are converted to 5L-CH3-MTF, this mechanism depletes the cells of folates in general.

Many PWCs have a low value of 5L-CH3-MTF, consistent with a partial block in the methylation cycle. Most methylation treatment protocols include supplementation with 5L-CH3-MTF, which is sold over-the-counter as Metafolin, FolaPro, or MethylMate B (trademarks), and in the prescription medical foods supplied by PamLab, including Deplin, CerefolinNAC and Metanx. There are some others on the market that include both racemic forms (5L and 5R) of this folate.

When methylation treatment is used, the level of 5-CH3-THF rises in nearly every PWC. If the concentration of 5-CH3-THF is within the reference range, but either SAM or the ratio of SAM to SAH is below the reference values, it suggests that there is a partial methylation cycle block and that it is caused by inavailability of sufficient bioactive B12, rather than inavailability of sufficient folate. A urine organic acids panel will show elevated methylmalonate if there is a functional deficiency of B12. I have seen this combination frequently, and I think it demonstrates that the functional deficiency of B12 is the immediate root cause of most cases of partial methylation cycle block. Usually glutathione is low in these cases, which is consistent with such a functional deficiency. As the activity of the methylation cycle becomes more normal, the demand for 5-CH3-THF will likely increase, so including it in the treatment protocol, even if not initially low, will likely be beneficial.

10-Formyl-THF: This is a measure of the concentration of 10-formyl
tetrahydrofolate in the blood plasma. The reference range is 1.5 to 8.2 nanomoles per liter.

This form of folate is involved in reactions to form purines, which form part of RNA and DNA as well as ATP. It is usually on the low side in PWCs, likely as a result of the methyl trap mechanism mentioned above. This deficiency is likely the reason for some elevation of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) often seen in PWCs. This deficit may also impact replacement of cells lining the gut, as well as white blood cells.

5-Formyl-THF: This is a measure of the concentration of 5-formyl
tetrahydrofolate (also called folinic acid) in the blood plasma. The reference range is 1.2 to 11.7 nanomoles per liter.

This form is not used directly as a substrate in one-carbon transfer reactions, but it can be converted into other forms of folate, and may serve as a buffer form of folate. Most but not all PWCs have a value on the low side. It is one of the
supplements in some methylation protocols. It can be converted to 5L-CH3-THF in the body by a series of three reactions, one of which requires NADPH, and it may also help to supply other forms of folate until the methionine synthase reaction comes up to more normal activity.

THF: This is a measure of the concentration of tetrahydrofolate in
the blood plasma. The reference range is 0.6 to 6.8 nanomoles per liter.

This is the fundamental chemically reduced form of folate from which several other reduced folate forms are synthesized, and thus serves as the hub of the folate metabolism. THF is also a product of the methionine synthase reaction, and participates in the reaction that converts formiminoglutamate (figlu) into glutamate in the metabolism of histidine. If figlu is found to be elevated in a urine organic acids panel, it usually indicates that THF is low. In PWCs it is lower than the mean normal value of 3.7 nanomoles per liter in most but not all PWCs.

Folic acid: This is a measure of the concentration of folic acid in
the blood plasma. The reference range is 8.9 to 24.6 nanomoles per liter.

Folic acid is a synthetic form of folate, not found in nature. It is added to food grains in the U.S. and some other countries in order to lower the incidence of neural tube birth defects, including spina bifida. It is the oxidized form of folate, and therefore has a long shelf life and is the most common commercial folate supplement. It is normally converted into THF by two sequential reactions catalyzed by dihydrofolate reductase (DHFR), using NADPH as the reductant. However, some people are not able to carry out this reaction well for genetic reasons, and PWCs may be depleted in NADPH, so folic acid is not the best supplemental form of folate for these people.

Low values suggest folic acid deficiency in the current diet. High values, especially in the presence of low values for THF, may be associated with inability to convert folic acid into reduced folate readily, such as because of a genetic polymorphism in the DHFR enzyme. They may also be due to high supplementation of folic acid.

Folinic acid (WB): This is a measure of the concentration of folinic acid in the whole blood. The reference range is 9.0 to 35.5 nanomoles per liter.

See comments on 5-formyl-THF above. Whole blood folinic acid usually tracks with the plasma 5-formyl-THF concentration.

Folic acid (RBC): This is a measure of the concentration of folic acid in the red blood cells. The reference range is 400 to 1500 nanomoles per liter.

The red blood cells import folic acid when they are initially being formed, but during most of their lifetime, they do not normally import, export, or use it. They simply serve as reservoirs for it, giving it up when they are broken down.

Many PWCs have low values of this parameter. This can be caused by a low folic acid status in the diet over the previous few months, since the population of RBCs at any time has ages ranging from zero to about four months. However, in CFS it can also be caused by oxidative damage to the cell membranes, which allows folic acid to leak out of the cells. Dr. Audhya reports that treatment with omega-3 fatty acids has been found to raise this value over time in one cohort.

If anyone finds errors in the above suggestions, I would appreciate being notified at richvank@aol.com.

* Nathan, N., and Van Konynenburg, R.A., Treatment Study of Methylation Cycle Support in Patients with Chronic Fatigue Syndrome and Fibromyalgia, poster paper, 9th International IACFS/ME Conference, Reno, Nevada, March 12-15, 2009. (http://www.mecfs-vic.org.au/sites/w...Article-2009VanKonynenburg-TrtMethylStudy.pdf



March 30. 2011

SIMPLIFIED TREATMENT APPROACH
FOR LIFTING THE METHYLATION CYCLE BLOCK
IN CHRONIC FATIGUE SYNDROMEMarch 30, 2011 Revision
Rich Van Konynenburg. Ph.D.
(Based on the full treatment program
developed by Amy Yasko, Ph.D., N.D.
which is used primarily in treating autism [1])

SUPPLEMENTS

1. General Vitamin Neurological Health Formula [2]: Start with tablet and increase dosage as tolerated to 2 tablets daily
2. Hydroxy B12 Mega Drops [3]: 2 drops under the tongue daily
3. MethylMate B [4]: 3 drops under the tongue daily
4. Folinic acid [5]: capsule daily
5. Phosphatidyl Serine Complex [6]: 1 softgel capsule daily (or lecithin, see below)

All these supplements can be obtained from http://www.holisticheal.com.
The fourth supplement comes in capsules that contain 800 mcg. It will be necessary to open the capsules, dump the powder onto a flat surface, and separate it into quarters using a knife to obtain the daily dose. The powder can be taken orally with water, with or without food.
These supplements can make some patients sleepy, so in those cases they take them at bedtime. In general, they can be taken at any time of day, with or without food.
Phosphatidyl serine can lower cortisol levels. Patients who already have low evening cortisol levels may wish to substitute lecithin [7] (at one softgel daily) for supplement number 5 above. Lecithin is also available from http://www.holisticheal.com.
For those allergic to soy, lecithin from other sources is available.
GO SLOWLY. As the methylation cycle block is lifted, toxins are mobilized and processed by the body, and this can lead to an exacerbation of symptoms. IF THIS HAPPENS, try smaller doses, every other day. SLOWLY work up to the full dosages.
Although this treatment approach consists only of nonprescription nutritional supplements, a few patients have reported adverse effects while on it. Therefore, it is necessary that patients be supervised by physicians while receiving this treatment.

[1] Yasko, Amy, Autism, Pathways to Recovery, Neurological Research Institute, 2009, available from http://www.holisticheal.com or Amazon.
[2] General Vitamin Neurological Health Formula is formulated and supplied by Holistic Health Consultants LLC.
[3] Hydroxy B12 Mega Drops is a liquid form of hydroxocobalamin (B12), supplied by Holistic Health Consultants. 2 drops is a dosage of 2,000 mcg.
[4] MethylMate B is a liquid form of (6s)-methyltetrahydrofolate supplied by Holistic Health Consultants, based on Extrafolate S, a trademark of Gnosis S.P.A. 3 drops is a dosage of 210 mcg.
[5] Folinic acid is 5-formyltetrahydrofolate. capsule is a dosage of 200 mcg.
[5] Phosphatidyl Serine Complex is a product of Vitamin Discount Center. 1 softgel is a dosage of 500 mg.
[7] Lecithin is a combination of phospholipids without phosphatidylserine. One softgel is a dosage of 1,200 mg.
 

Nielk

Senior Member
Messages
6,970
I see integrative MD's. One is the Dzugan Method, Dr. Sergey Dzugan. You can google him. Amazing people. If all docs were like these, more people would feel so much better or even be well. Depending on the health problems of course. I have not had a migraine since starting with Dzugan.

I just did an initial google. It sounds interesting and I do suffer from migaine headaches. Will look into it.
Thanks,
Nielk
 

SaraM

Senior Member
Messages
526
Hi Rich,

First of all I want to thank you for all the things you are doing for CFS patients. I have been on your simple methylation protocol for 2 years which took care of my sleep problem instantly . I will definitely find a doc to order the test (my present GP can't do it), and will post the result here.

Best regards,

Sara
 

Gavman

Senior Member
Messages
316
Location
Sydney
Sara, can I ask where your thyroid pain was indicated?

Rich, what clinicians would fall under that category? I am seeing an NAET practitioner who is helping me. Would that be enough or would i need to find someone higher up the food chain?
 

richvank

Senior Member
Messages
2,732
Hi Rich,

First of all I want to thank you for all the things you are doing for CFS patients. I have been on your simple methylation protocol for 2 years which took care of my sleep problem instantly . I will definitely find a doc to order the test (my present GP can't do it), and will post the result here.

Best regards,

Sara

O.K., Sara.

It sounds as though the simplified protocol has not been able to completely restore your methylation cycle function by itself, and that you still have a methylation deficit. Testing should help to find out why. Your body might be deficient in one or more of the cofactor vitamins or minerals, or in amino acids. Another possibility is something that is holding glutathione down, such as an infection or a high body burden of heavy metals, such as mercury. It might take some more detailed testing to determine what is blocking improvement. But the methylation pathways panel would be the first step, in my opinion, because it will reveal the status of the methylation cycle, the folate metabolism, and glutathione.

Best regards,

Rich
 

richvank

Senior Member
Messages
2,732
Sara, can I ask where your thyroid pain was indicated?

Rich, what clinicians would fall under that category? I am seeing an NAET practitioner who is helping me. Would that be enough or would i need to find someone higher up the food chain?

Hi, Gavman.

If you mean what type of clinician can order the methylation pathways panel, any licensed physician or chiropracter can do so. Your NAET practitioner could send an order on his/her letterhead to the Health Diagnostics and Research Institute and see if they would accept it. They have to live under certain rules established by the government lab certification agencies.

Best regards,

Rich