• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of and finding treatments for complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia (FM), long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

Links Found Between Inflammation, Bacterial Communities & Cancer

Glynis Steele

Senior Member
Messages
404
Location
Newcastle upon Tyne UK
ScienceDaily (Aug. 16, 2012) — What if a key factor ultimately behind a cancer was not a genetic defect but ecological?

Ecologists have long known that when some major change disturbs an environment in some way, ecosystem structure is likely to change dramatically. Further, this shift in interconnected species' diversity, abundances, and relationships can in turn have a transforming effect on health of the whole landscape -- causing a rich woodland or grassland to become permanently degraded, for example -- as the ecosystem becomes unstable and then breaks down the environment.

For this reason, it should come as no surprise that a significant disturbance in the human body can profoundly alter the makeup of otherwise stable microbial communities co-existing within it and that changes in the internal ecology known as the human microbiome can result in unexpected and drastic consequences for human health.

A report published in the August 16 online edition of the journal Science gives evidence for such a chain reaction. It has long been known that gut inflammation is a risk factor for cancer. The new study suggests that this may be in part because inflammation disturbs gut ecosystems leading to conditions that allow pathogens to invade the gut. These pathogens may damage host cells increasing the risk of the development of colorectal cancer.

In a series of experiments conducted with mice prone to intestinal inflammation, the researchers found that inflammation itself causes significant simplification in diverse communities of gut microbes and allows new bacterial populations to establish major footholds. Among the bacterial taxa invading the disturbed intestinal ecosystem, the research team found a greatly increased presence of E. coli and related bacteria. By putting E. coli bacteria into mice that were raised under sterile conditions, the team also found that the presence of E. coli promoted tumor formation. When regions of the E. coli genome known to be involved in DNA damage were removed, the ability of the E. coli to cause tumors was substantially decreased.

The researchers noted that the mouse results may have implications for human health as well, as they also found an E. coli variant with the suspect genes in high percentages of human patients with colorectal cancer and irritable bowel disease.

Full article here:

http://www.sciencedaily.com/releases/2012/08/120816141527.htm