Review: 'Through the Shadowlands’ describes Julie Rehmeyer's ME/CFS Odyssey
I should note at the outset that this review is based on an audio version of the galleys and the epilogue from the finished work. Julie Rehmeyer sent me the final version as a PDF, but for some reason my text to voice software (Kurzweil) had issues with it. I understand that it is...
Discuss the article on the Forums.

Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity.

Discussion in 'Hypersensitivity and Intolerance' started by osisposis, Sep 22, 2016.

  1. osisposis

    osisposis Senior Member

    Messages:
    389
    Likes:
    231
    Asthma is a clinically heterogeneous genetic disease, and its pathogenesis is incompletely understood. Genome-wide association studies link ORM (yeast)-Like protein isoform 3 [corrected] (ORMDL3), a member of the ORM gene family, to nonallergic childhood-onset asthma. Orm proteins negatively regulate sphingolipid (SL) synthesis by acting as homeostatic regulators of serine palmitoyl-CoA transferase (SPT), the rate-limiting enzyme of de novo SL synthesis, but it is not known how SPT activity or SL synthesis is related to asthma. The present study analyzes the effect of decreased de novo SL synthesis in the lung on airway reactivity after administration of myriocin, an inhibitor of SPT, and in SPT heterozygous knockout mice. We show that, in both models, decreased de novo SL synthesis increases bronchial reactivity in the absence of inflammation. Decreased SPT activity affected intracellular magnesium homeostasis and altered the bronchial sensitivity to magnesium. This functionally links decreased de novo SL synthesis to asthma and so identifies this metabolic pathway as a potential target for therapeutic interventions.
    https://www.ncbi.nlm.nih.gov/pubmed/23698380

    Intratracheal myriocin enhances allergen-induced Th2 inflammation and airway hyper-responsiveness.
    Ceramide is the central substrate of sphingolipid metabolism and plays a key role in cellular signal transduction pathways, regulating apoptosis, differentiation, and chemotaxis. Alterations in airway ceramide levels are observed in multiple pulmonary diseases and recent human genetic association studies have linked dysregulation of sphingolipid regulatory genes with asthma pathogenesis.

    Intratracheal myriocin, likely acting via ceramide synthesis inhibition, enhances allergen-induced airway inflammation, granulocyte and Th2 lymphocyte recruitment, and allergen-induced AHR. Sphingolipid pathways may represent novel targets for possible future anti-inflammatory asthma medications.
    https://www.ncbi.nlm.nih.gov/pubmed/27621809
    full
    Approximately 70% of all asthma patients suffer from the allergic subtype of the disease 1. Many individuals initially develop wheezing, the central symptom of asthma, during early childhood, but only a fraction of these patients will develop the chronic airway hyper‐responsiveness (AHR) that defines persistent asthma 2.

    Therefore, dysregulation of the innate immune responses (e.g., exaggerated chemokine production) may significantly influence the intensity of acute allergen‐induced airway inflammation and hasten the development of asthma‐associated AHR.

    In summary, we show that intratracheal myriocin treatment increased airway neutrophil accumulation via enhanced CXCL1 production without affecting AHR. When myriocin was administered during HDM sensitization, the co‐treatment amplified the allergic asthma phenotype (enhancing AHR, Th2 T cell recruitment, and airway eosinophilia) despite failing to reduce steady‐state whole lung ceramide levels. In vitro experiments showed that CXCL1 production in antigen‐stimulated pulmonary myeloid cells is regulated by de novo ceramide production, suggesting that altered sphingolipid metabolism in these innate immune cells might contribute to asthma pathogenesis independent of changes in global lung ceramide levels. These novel findings indicate that ceramide signaling within key immune cells is an important regulator of allergen‐induced airway inflammation, with implications for the development of new therapies targeting sphingolipid metabolism.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893390/


    Airway reactivity and sphingolipids-implications for childhood asthma.
    Asthma is a clinically heterogeneous disorder, whose onset and progression results from a complex interplay between genetic susceptibility, allergens, and viral triggers. Sphingolipids and altered sphingolipid metabolism have emerged as potential key contributors to the pathogenesis of asthma. Orosomucoid-like 3 gene (ORMDL3) and the asthma susceptibility locus 17q21 have been strongly and reproducibly linked to childhood asthma, but how this gene is functionally linked to asthma is incompletely understood. ORMDL proteins play an integral role in sphingolipid homeostasis and synthesis, and asthma-associated ORMDL3 polymorphisms have been associated with early viral respiratory infections and increased risk of asthma. ORMDL proteins act as inhibitors of serine palmitoyl-CoA transferase (SPT), the rate-limiting enzyme for de novo sphingolipid synthesis, and decreased sphingolipid synthesis through SPT increases airway hyperreactivity, which is independent of allergy or inflammation. In allergic models of asthma, the sphingolipid mediators sphingosine-1-phosphate (S1P) and ceramide have been shown to be important signaling molecules for airway hyperreactivity, mast cell activation, and inflammation. This review will highlight how sphingolipids and altered sphingolipid metabolism may contribute towards the underlying mechanisms of childhood asthma.
    https://www.ncbi.nlm.nih.gov/pubmed/26637347


    The role of ORMDL proteins, guardians of cellular sphingolipids, in asthma.
    A family of widely expressed ORM-like (ORMDL) proteins has been recently linked to asthma in genomewide association studies in humans and extensively explored in in vivo studies in mice. ORMDL proteins are key regulators of serine palmitoyltransferase, an enzyme catalyzing the initial step of sphingolipid biosynthesis. Sphingolipids play prominent roles in cell signaling and response to stress, and they affect the mechanistic properties of cellular membranes. Deregulation of sphingolipid biosynthesis and their recycling has been proven to support and even cause several diseases including allergy, inflammation, and asthma. ORMDL3, the most extensively studied member of the ORMDL family, has been shown to be important for endoplasmic reticulum homeostasis by regulating the unfolded protein response and calcium response. In immune cells, ORMDL3 is involved in migration and in the production of proinflammatory cytokines. Furthermore, changes in the expression level of ORMDL3 are important in allergen-induced asthma pathologies. This review focuses on functional aspects of the ORMDL family proteins, which may serve as new therapeutic targets for the treatment of asthma and some other life-threatening diseases.
    https://www.ncbi.nlm.nih.gov/pubmed/26969910

    Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis.
    Sphingolipids (SL) are both fundamental structural components of the eukaryotic membranes and signaling molecules that regulate a variety of biological functions. The highly-bioactive lipids, ceramide and sphingosine-1-phosphate, have emerged as important regulators of cardiovascular function in health and disease. In this review we discuss recent insights into the role of SLs, particularly ceramide and sphingosine-1-phosphate, in the pathophysiology of the cardiovascular system. We also highlight advances into the molecular mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo SL biosynthesis, with an emphasis on the recently discovered inhibitors of serine palmitoyltransferase, ORMDL and NOGO-B proteins. Understanding the molecular mechanisms regulating this biosynthetic pathway may lead to the development of novel therapeutic approaches for the treatment of cardiovascular diseases.

    https://www.ncbi.nlm.nih.gov/pubmed/27562337


    Sphingolipids in lung growth and repair.
    Sphingolipids comprise a class of bioactive lipids that are involved in a variety of pathophysiologic processes, including cell death and survival. Ceramide and sphingosine-1-phosphate (S1P) form the center of sphingolipid metabolism and determine proapoptotic and antiapoptotic balance. Findings in animal models suggest a possible pathophysiologic role of ceramide and S1P in COPD, cystic fibrosis, and asthma. Sphingolipid research is now focusing on the role of ceramides during lung inflammation and its regulation by sphingomyelinases. Recently, sphingolipids have been shown to play a role in the pathogenesis of bronchopulmonary dysplasia (BPD). Ceramide upregulation was linked with vascular endothelial growth factor suppression and decreased surfactant protein B levels, pathways important for the development of BPD. In a murine model of BPD, intervention with an S1P analog had a favorable effect on histologic abnormalities and ceramide levels. Ceramides and S1P also regulate endothelial permeability through cortical actin cytoskeletal rearrangement, which is relevant for the pathogenesis of ARDS. On the basis of these observations, the feasibility of pharmacologic intervention in the sphingolipid pathway to influence disease development and progression is presently explored, with promising early results. The prospect of new strategies to prevent and repair lung disease by interfering with sphingolipid metabolism is exciting and could potentially reduce morbidity and mortality in patients with severe lung disorders.
    https://www.ncbi.nlm.nih.gov/pubmed/24394822
     
    rosie26, trails, Hutan and 1 other person like this.

See more popular forum discussions.

Share This Page