Julie Rehmeyer's 'Through the Shadowlands'
Writer Never Give Up talks about Julie Rehmeyer's new book "Through the Shadowlands: A Science Writer's Odyssey into an Illness Science Doesn't Understand" and shares an interview with Julie ...
Discuss the article on the Forums.

Connectome Map More Than Doubles Human Cortex’s Known Regions

Discussion in 'Other Health News and Research' started by Kati, Jul 21, 2016.

  1. Kati

    Kati Patient in training

    Messages:
    5,466
    Likes:
    19,595
    http://www.nimh.nih.gov/news/scienc...han-doubles-human-cortexs-known-regions.shtml

    Connectome Map More Than Doubles Human Cortex’s Known Regions
    Software automatically detects each area’s “fingerprint” in scans – NIH-funded study

    July 20, 2016 • Press Release

    Researchers have mapped 180 distinct areas in our brain’s outer mantle, or cortex – more than twice the number previously known. They have also developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans. Funded by the National Institutes of Health through its Human Connectome Project (HCP), this software correctly mapped the areas by incorporating data from multiple non-invasive brain imaging measures that corroborated each other.

    “These new insights and tools should help to explain how our cortex evolved and the roles of its specialized areas in health and disease, and could eventually hold promise for unprecedented precision in brain surgery and clinical work-ups,” said Bruce Cuthbert, Ph.D., acting director of NIH’s National Institute of Mental Health (NIMH), which co-funded the research as part of the HCP.

    The new study identified – with a nearly 97 percent detection rate – 97 new cortex areas per hemisphere, in addition to confirming 83 that were previously known.

    NIMH grantees David Van Essen, Ph.D., and Matthew Glasser , Ph.D., of Washington University in St. Louis, and colleagues at six other researcher centers, report on their discoveries July 20, 2016 in the journal Nature.

    Earlier studies of cortex organization often used just one measure, such as examining postmortem tissue with a microscope. Uncertain delineation of cortex areas has sometimes led to shaky comparability of brain imaging findings.

    “The situation is analogous to astronomy where ground-based telescopes produced relatively blurry images of the sky before the advent of adaptive optics and space telescopes,” noted Glasser, lead author of the study.

    The HCP team set out to banish this blurriness by using multiple, precisely aligned, magnetic resonance imaging (MRI) modalities to measure cortical architecture, activity, connectivity, and topography in a group of 210 healthy participants. These measures – including cortex thickness, cortex myelin content, task and resting-state functional MRI (fMRI) – cross-validated each other. The findings were, in turn, confirmed in an additional independent sample of 210 healthy participants.

    Even though some cortex areas turned out to be atypically located in a small minority of subjects, the data-derived algorithms incorporated into the software were able to successfully map them. While the study included fMRI scans of subjects performing tasks, the researchers determined that resting-state MRI techniques should suffice to map the areas in future studies using the tools they developed. Some areas may turn out to have further subdivisions or be subunits of other areas, in light of new data, noted senior author Van Essen.

    “The ability to discriminate individual differences in the location, size, and topology of cortical areas from differences in their activity or connectivity should facilitate understanding of how each property is related to behavior and genetic underpinnings,” added Glasser.

    The automated “areal classifier” and related tools are being shared with the research community via HCP websites . In addition, the extensively analyzed data underlying each of the published figures can be accessed via an NIH-funded database developed in the Van Essen laboratory (http://balsa.wustl.edu ).

    [​IMG]
    The researchers discovered that our brain’s cortex, or outer mantle, is composed of 180 distinct areas per hemisphere. For example, the image above shows areas connected to the three main senses – hearing (red), touch (green) vision (blue) and opposing cognitive systems (light and dark). The map is based on data from resting state fMRI scans performed as part of the Human Connectome Project. Source: Matthew Glasser, Ph.D., and David Van Essen, Ph.D., Washington University

    [​IMG]

    Dr. David Van Essen, of Washington University, presented findings of the first phase of the Human Connectome Project during a recent talk at NIH. He explains how combining information about the cortex’s architecture, topography, connectivity, and function led to identification of 180 distinct areas – beginning at about 01:06:02.
     
    Woolie, Comet, Scarecrow and 4 others like this.
  2. aimossy

    aimossy Senior Member

    Messages:
    1,096
    Likes:
    3,791
    Very cool, brings more discovery possibilities.
     
  3. Snowdrop

    Snowdrop Rebel without a biscuit

    Messages:
    2,896
    Likes:
    10,092
    What I don't understand though is that they want to use it as a guide for avoiding regions during surgery.
    It's my understanding that the brain uses whatever region it can if there is some dysfunction in the preferred region.
    So unless you are familiar with the individuals brain the map is still a guide but cannot be accurate in all counts all the time.
     
  4. Woolie

    Woolie Senior Member

    Messages:
    1,930
    Likes:
    14,558
    @Snowdrop, some parts of cortex can be "reassigned" to some extent, but many parts can't. Especially not in adults. So if you lose your primary visual cortex as an adult, you're blind. Forever. If you lose your primary motor cortex, you can't move your limbs. Forever. And if you lose key language areas - especially Wernicke's area - you'll never get back your previous language abilities. You can learn ways to get around the problem, but the problem itself never goes away.

    So it does matter which region you remove. Plus there's the issue of which functions are most important to having a good life. I personally would prefer someone to take bits of my right parietal lobe than my language areas. It could cause me some inconvenience (that area seems to be important for spatial processing), but at least I'd be able to communicate.
     
    Snowdrop and Dolphin like this.
  5. Woolie

    Woolie Senior Member

    Messages:
    1,930
    Likes:
    14,558
    PS, you're right, though, @Snowdrop, that individual variability is a problem. The ultimate aim of this sort of work is to provide a blueprint for actually creating a pesonalised map for each individual. We can sort of do that now, but it takes ages, so not really viable in the real world yet.
     
    Dolphin likes this.
  6. Snowdrop

    Snowdrop Rebel without a biscuit

    Messages:
    2,896
    Likes:
    10,092
    Thanks @Woolie for providing that explanation.
     

See more popular forum discussions.

Share This Page