• Welcome to Phoenix Rising!

    Created in 2008, Phoenix Rising is the largest and oldest forum dedicated to furthering the understanding of, and finding treatments for, complex chronic illnesses such as chronic fatigue syndrome (ME/CFS), fibromyalgia, long COVID, postural orthostatic tachycardia syndrome (POTS), mast cell activation syndrome (MCAS), and allied diseases.

    To become a member, simply click the Register button at the top right.

Breaking bad mitochondria: How hepatitis C survives

Ema

Senior Member
Messages
4,729
Location
Midwest USA
Specifically, the researchers discovered that the virus stimulates the production of a protein (Drp 1) that induces viral-damaged mitochondria to undergo asymmetric fragmentation. This fragmentation (fission) results in the formation of one healthy mitochondrion and one damaged or bad mitochondrion, the latter of which is quickly broken down (catabolized) and dissolved in the cell's cytoplasm.

Although the fragmentation serves to excise the damaged area from the mitochondrion, the formation of a healthy mitochondrion also helps keep the virus-infected cell alive. Moreover, the virus is able to use the mitochondrial remains (all the amino acids and lipids from the catabolized mitochondrion) to help fuel its continued replication and virulence.

"It's like the bad part of the house is demolished to the benefit of the virus," Siddiqui said.

In their experiments, the researchers showed that hepatitis C-infected cells with higher Drp 1 protein levels also produced less interferon, the body's natural immune booster. These cells were also less likely to undergo apoptosis, a process that would encourage damaged cells to essentially kill themselves.

The reverse was also observed: When the Drp 1 protein was "silenced," interferon production and apoptotic activity increased.

"Mitochondrial processes are at the center of understanding the persistence of the virus and how it flies under the radar of the body's natural immune response," he said. "The trick is to find a way to deliver a drug that could target the Drp 1 protein specifically in hepatitis C-infected liver cells, maybe through nanotechnology."