NutraHacker

Detox and Methylation Mutation Report for Customer: 51092f66-5c5d-4d88-92bc-c0e95df0b031

Instructions:

This FREE NutraHacker report contains detox and methylation mutations (single nucleotide polymorphisms) in this uploaded genome. Genes not reported in this report are either normal, not actionable, available only in the paid service offered by NutraHacker, or are not currently detected by NutraHacker. The expected allele is the one seen in a normally functioning gene. The high risk alleles reported are the ones measured from the uploaded genome. NutraHacker reports the effects of these mutations as discovered by published empirical data and suggests nutritional supplements that can mitigate potential issues caused by these mutations.

This report is meant to serve as a guide for nutritional supplementation for the owner of the genome and is not applicable to any other individual. Supplement quantities and dosages are not included as they are indicated on the purchased product. Multiple recommendations for the same supplement does not mean that the dosage should be multiplied. In the case of a conflict (such as a particular vitamin being both encouraged and discouraged), the owner of the genome should assess his/her own personal biology to decide whether to include or discard that particular supplement.

Thank you for using NutraHacker. To your health!

A total of 19 mutations were detected at this time for your genome out of the 58 polymorphisms assessed.

There were 5 homozygous mutations.

There was 1 sex-linked mutation.

There were 13 heterozygous mutations.

Please continue to the next page to begin your discovery process.

RSID	Gene	Expected	Alleles: Risk		Gene Function			Consequences	Enc	ourage		Avoid
rs3741049	ACAT1	G	AG: 1/2	Forms	cholesterol	esters	from	3-ketothiolase deficiency, depletes b12	Probiotics,	b12	in	Cholesterol
	•	-	•	choleste	erol				recommended	d form, low	fat	
								•	diet			

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs819147	AHCY	Т	CT: 1/2	Hydrolyzes S-adenosylhomocysteine	Decreased homocysteine, more complex with	ornithine, molybdenum,	sulfur, sulfates
	-	-	-	to adenosine and homocysteine	concurrent CBS mutation	manganese, zinc, carnosine,	
						thiamine (reduced by high	
						sulfates)	

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences		Encourage	Avoid
rs819171	AHCY	Т	CT: 1/2	Hydrolyzes S-adenosylhomocysteine	Decreased homocysteine, more complex	with	ornithine, molybdenum,	sulfur, sulfates
	-			to adenosine and homocysteine	concurrent CBS mutation		manganese, zinc, carnosine,	
							thiamine (reduced by high	
							sulfates)	

RSID	Gene	Expected	Alleles: Risk	Ge	ne Function		Consequences	Encourage	Avoid
rs651852	BHMT08	Т	CC: 2/2	Methylates	homocysteine	to	Downregulation	phosphatidylcholine, TMG,	
				methionine				phosphatidylserine, zinc	

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs234706	CBS	G	AG: 1/2	Adds I-serine to homocysteine to	Results in slightly faster disposal of homocysteine.	Vitamin B6	
				produce I-cystathionine	This is a very small up-regulation, and should not		
					result in sulfur or ammonia problems.		

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs4633	COMT	С	TT: 2/2	Degrades catecholamines, Phase II,	Same amino acid sequence, lower expression of	Hydroxy b12	methyl b12, other methyl
•				inactivates hydroxy-estrogens	gene, less breakdown of catecholamines, CFS	(hydroxycobalamin)	donors

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs4680	COMT	G	AA: 2/2	Degrades catecholamines, Phase II,	Slower breakdown dopamine, oestrogen, worrier,	Hydroxy b12	methyl b12, other methyl
	-	-		inactivates hydroxy-estrogens	prone to anxiety, more sensitive to green tea	(hydroxycobalamin)	donors, cannabis

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs762551	CYP1A2	Α	AC: 1/2	Hydroxylation or dealkylation of	Slow to metabolize caffeine, Main liver pathway	Induce with broccoli, cabbage,	inhibit with curcumin, cumin,
•	•			xenobiotics, Phase I, metabolize E2 to		DIM, glucarate, NAC,	grapefruit
				2-hydroxyestradiol (GOOD)		cardamom, sulfaphorane	

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs16947	CYP2D6	G	AG: 1/2	Detoxifies 20% of prescription drugs	Possible ultra metabolizer		Substrates of this enzyme

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs1695	GSTP1	G	AA: 2/2	Conjugation toxins to glutathione		NAC, whey	Vitamin E

RSID	Gene	Expected	Alleles: Risk	Gene Function		Consequences	Encourage	А	void
rs6323	MAO A	G	T: 1/1	Oxidizes serotonin, dopa	amine,	Lower expression of MAO A, decreased placebo	Progesterone (however wide	Curcumin,	estrogens,
	•	-		epinephrine, norepinephrine		response, more prone to aggression	range of effects, possibly	androgens	
							carcinogenic)		

RSID	Gene	Expected	Alleles: Risk	C	Gene Function			Consequences					Е	ncourag	e	Avoid
rs1801131	MTHFR	А	GG: 2/2	Converts	folic	acid t	o L	ow BH4	excess ar	nmonia, low	nitric oxide,	does	L-methylfol	ate,	niacin,	Folinic acid, folate
	-	-	-	5-methyltetra	ahydrofolate	;	Ν	IOT lea	d to high	homocystein	e, however	high	potassium,	ornithine	e, b6, b12,	
							s	uperoxid)				Vitamin	C,	rooibos,	
													manganes	Э		

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs1801394	MTRR	А	AG: 1/2	Methylates, recycles vitamin b12	Poor methylation of b12. Results in higher	Methyl b12, I-methylfolate	
	•	•	•		homocysteine and lower methionine. B12		
					supplementation may help. If sensitive to methyl		
					groups at all, hydroxyB12 should be a safer form than		
					methylB12. If taking methylB12, be careful of		
					potassium issues.		

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs1801280	NAT2	Т	CT: 1/2	This gene encodes an enzyme that	Slow metabolizer	NAC	
	•		-	functions to both activate and			
				deactivate arylamine and hydrazine			
				drugs and carcinogens.			

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs1208	NAT2	А	AG: 1/2	This gene encodes an enzyme that	Fast metabolizer		
	•	-		functions to both activate and			
				deactivate arylamine and hydrazine			
				drugs and carcinogens.			

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	A	oid .
rs4880	SOD2	С	AG: 1/2	Mitochondrial superoxide dismutase 2	Increase risk of heart disease for females with	Manganese	Alcohol, no	oise (greater
	•	-	-		diabetes, less active enzyme		chance for hea	aring loss)

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs4880	SOD2	С	AG: 1/2	Manganese superoxide dismutase	Mutations in this gene have been associated	Vitamin E in tocotrienol form	alcohol
	•	•			with idiopathic cardiomyopathy (IDC), sporadic motor		
					neuron disease, and cancer. Noise induced hearing		
					loss, rs10370 'TT', rs4880 'GG' diplo-genotype		
					(diplotype) was associated with more gray matter		
					shrinkage in 76 individuals who report chronic high		
					levels of alcohol consumption.		

RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs1544410	VDR	G	CT: 1/2	Vitamin D Receptor	Downregulated Vitamin D receptor, may be more	D3, Sage, Rosemary	methyl donors
	-	-	-		complex		

	RSID	Gene	Expected	Alleles: Risk	Gene Function	Consequences	Encourage	Avoid
rs73	31236	VDR	Α	AG: 1/2	Vitamin D Receptor	Downregulated Vitamin D receptor, can affect	D3, Sage, Rosemary	methyl donors
						dopamine levels, may be more complex		