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Major depression and anxiety disorders have high prevalence rates and are frequently comorbid. The
neurobiological bases for these disorders are not fully understood, and available treatments are not always
effective. Current models assume that dysfunctions in neuronal proteins and peptide activities are the primary
causes of these disorders. Brain lipids determine the localization and function of proteins in the cell membrane
and in doing so regulate synaptic throughput in neurons. Lipids may also leave the membrane as transmitters
and relay signals from the membrane to intracellular compartments or to other cells. Here we review how

Ié:ft‘;v Zrcﬁ' membrane lipids, which play roles in the membrane's function as a barrier and a signaling medium for classical
Glycerolipid transmitter signaling, contribute to depression and anxiety disorders and how this role may provide targets for
Glycerophospholipid lipid-based treatment approaches. Preclinical findings have suggested a crucial role for the membrane-forming
Sphingolipid n-3 polyunsaturated fatty acids, glycerolipids, glycerophospholipids, and sphingolipids in the induction of
Major depression depression- and anxiety-related behaviors. These polyunsaturated fatty acids also offer new treatment options
Anxiety disorder such as targeted dietary supplementation or pharmacological interference with lipid-regulating enzymes.

While clinical trials support this view, effective lipid-based therapies may need more individualized approaches.
Altogether, accumulating evidence suggests a crucial role for membrane lipids in the pathogenesis of depression
and anxiety disorders; these lipids could be exploited for improved prevention and treatment. This article is part

of a Special Issue entitled Brain Lipids.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With lifetime prevalences of more than 10%, major depressive
disorder and anxiety disorders are common mental disorders
[12]. These disorders lead to significant suffering for the affected
persons and, therefore, belong to the leading diseases in the
study of the total global burden of disease [221]. Approximately
10% of patients with depression commit suicide. The causes of

these disorders are poorly understood. In this review, we summa-
rize the current status of the relationship between lipids and depres-
sion and anxiety disorders.

Lipids play an increasingly recognized role in neuronal function in
the brain [21]. The lipid composition of the brain (within single brain
regions, specific neuronal subtypes, or even neuronal subcompartments)
substantially influences subjective perception, mood and emotional
behavior. A large number of lipids can be found in the plasma membrane,
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where they regulate the membrane's function as a barrier between the
intracellular and extracellular spaces. Membrane lipids can also deter-
mine the localization and function of proteins within the membrane
and in doing so regulate synaptic throughput. Lipids can influence both
exo- and endocytic processes and work within the membrane as second
messengers. Lipids may be hydrolyzed and leave the membrane in both
directions: as intracellular transmitters, they can relay signals from the
membrane to intracellular compartments, and as extracellular transmit-
ters, they can relay information to other cells. This review will focus on
membrane lipids, which play roles in the membrane's function as a
barrier and a signaling medium for classical transmitter signaling. An
overview of the role of membrane-derived extracellular signaling lipids
in synaptic function and emotional behavior can be found in other
reviews [31,178,223]. The organization of this review follows the lipid
classification of LIPID MAPS [56,57].

Membrane lipids have important functions in the brain. Membrane
lipids constitute a physical barrier that segregates the inner and
outer cellular environments; these lipids are also involved in cell
signaling [210]. The lipid fraction of mammalian membranes
consists of glycerophospholipids, sphingolipids and the sterol lipid
cholesterol. The relative proportions of these components vary a great
deal depending on the cell type and the type of membrane [71,210].
Glycerophospholipids use glycerol as a backbone, which carries two
long-chain fatty acids (FA) attached at the sn-1 and sn-2 positions primar-
ily through ester linkages (therefore called diacylglycerophospholipids).
Polyunsaturated fatty acids (PUFAs) are preferentially attached to
the sn-2 position, while the FA at sn-1 is usually saturated. The sn-3
position is occupied by one of several head groups. The typical
glycerophospholipids found in mammalian membranes are phos-
phatidylcholines (PC; synonym: glycerophosphocholines), phospha-
tidylethanolamines (PE; synonym: glycerophosphoethanolamines),
phosphatidylserines (PS; synonym: glycerophosphoserines) and
phosphatidylinositols (PI; synonym: glycerophosphoinositols) that
are all attached through a phosphodiester linkage. Depending on
the cell type, a substantial portion of glycerophospholipids consists
of plasmalogens (1-alkyl,2-acyl glycerophospholipids) that bear an
ether-linked alkyl chain at the sn-1 position instead of the ester-
linked FA [147]. Plasmalogens are especially abundant in the adult
human central nervous system [147] and are thought to play a role in
Alzheimer's disease [77]. Sphingolipids, the other abundant lipid cate-
gory in plasma membranes, are synthesized from ceramide (Cer). Cer
is composed of the long-chain amino alcohol sphingosine and a long
saturated FA (C16-C32) attached to the 2-amino group via an amide
linkage. The major sphingolipids in mammalian membranes are
sphingomyelin (SM) and the glycosphingolipids (GSL), which contain
mono-, di- or oligosaccharides based on glucosylceramide (GlcCer) or
galactosylceramide (GalCer) [114]. Gangliosides are GSL with terminal
sialic acids. They are expressed at high abundance and complexity in
the brain [186,209]. Cerebrosides are either GlcCer or GalCer and play
an important role in myelin function and stability [33].

The lipid classes contribute differentially to the bilayer assembly and
the structural demands of biological membranes [210]. The lipid classes
also differ in their ability to interact with proteins embedded in the
membrane. Recently, a direct and highly specific interaction of exactly
one SM species, N-stearoyl sphingomyelin (SM 18), with the trans-
membrane domain of protein p24, a protein involved in coat protein
complex I (COPI) vesicle biogenesis, was demonstrated [36], indicating
that membrane lipids can act as cofactors to regulate protein function.
The acidic phospholipids PS and PI, which are preferentially located in
the inner leaflet of the plasma membrane, are specifically recognized
by soluble proteins [120]. The association of proteins with the surface
of the intracellular membrane is essential for a wide variety of cellular
functions. A small portion of the PI pool is further phosphorylated at
the 3-, 4- and/or 5-positions to generate one of seven different
phosphoinositides (synonym: phosphatidylinositol phosphates, PIPs).
These lipids can be hydrolyzed into second messengers that mediate

acute responses [15] or act as constitutive signals that define organelle
identity [47].

The signaling-induced activation of hydrolytic enzymes can lead to
the conversion of structural membrane components into regulatory
messengers. PC can be converted into phosphatidic acid (PA) through
the action of phospholipase D (PLD). PC-specific and PI-specific
phospholipase C can remove the head group of phospholipids to yield
diacylglycerol (DAG). SM can be converted to Cer by one of several
sphingomyelinases. PA, DAG and Cer retain the full hydrophobic portion
of their parent molecules and thus remain part of the membrane.
They exert their regulatory function either through the recruitment
of cytosolic proteins or by changing the biophysical properties
of the membrane. In contrast, the removal of a FA from either
glycerophospholipids or sphingolipids yields molecules that can readily
leave the membrane. Examples include the production of a variety of
lysophospholipids (synonym: monoacylglycerophospholipids) from
their respective glycerophospholipids through the action of phos-
pholipase A, (PLA,), sphingosylphosphorylcholine (SPC) from SM
via sphingomyelin deacylase [143] and sphingosine from Cer via
ceramidase. Most of their regulatory function can be attributed to
their binding to specific receptors. The FA released by these hydroly-
ses can further act in signal transduction, e.g., PUFA can be converted
into eicosanoids.

2. Fatty acids
2.1. Preclinical evidence

The lipid composition of the brain can be altered with long-term
changes in diet. This effect may have direct consequences on mood
and emotional behavior. A highly palatable diet particularly rich in fat
and low in proteins (often called the “cafeteria diet”) fed to rats for
8 weeks after weaning induced overweight status, higher adiposity,
and a higher liver weight, as well as a reduction in anxiety-like behav-
iors in the open field and elevated plus maze (EPM) anxiety tests. This
diet has also been shown to reduce general locomotor activity but
increase social interactions and aggression, reduce pain threshold
[22,116,168], and potentiate the anxiolytic effects of repeated foot
shock stress [160]. These findings suggest that enhancing the general
availability of lipids in the brain may have an anxiolytic/antidepressant
effect. Nonetheless, the anxiolytic potential of this diet may be
age-dependent and gender-specific with stronger effects in females
[116,218]. The maternal intake of a high-energy diet enriched in
PUFAs induced higher locomotor activity in the open field, increased
levels of aggressive behavior in the resident intruder test, and had
antidepressant-like effects in the forced swim test (FST) in mouse
offspring [177].

The dietary effects on locomotor activity may thus depend on when
PUFAs are enriched during development. Increased locomotion may
occur if the supply is high during the prenatal time and weaning. The
opposite effect can be observed if PUFAs are chronically increased only
after weaning. Interestingly, a diet that was highly palatable due to an
increased carbohydrate content also increased body weight and fat
mass in rats but increased anxiety-like behavior in the light-dark test
[197]. The anxiolytic/antidepressant effect of a diet is hypothesized to
result not primarily from its palatability and increased expression of
eating behavior but rather an increased lipid supply [168]; however,
see also [137]. A study on susceptibility to chronic unpredictable stress,
which may trigger depression-related behavior [164,222], suggested
that the combination of a high-fat plus high-carbohydrate diet
most effectively protects rats against a stress-induced increase in
corticosterone levels [226].

Brain membranes contain a high proportion of PUFAs, with n-3 FA
being the most prevalent in the brain's gray matter [20,193]. n-3
PUFAs cannot be synthetized de novo by mammals but must be
obtained from the diet. The incorporation of these FA into the brain
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occurs most efficiently during the suckling period and requires more
time during adulthood [176,192,193]. When the brain levels of
docosahexaenoic acid (DHA; 22:6n-3) in phospholipids are reduced
by a diet, a compensatory increase in docosapentanoic acid (DPA;
22:5n-6) levels is usually observed [28,45,64]. The effects of n-3 FA
deprivation on brain content and behavior can accumulate over the
duration of a diet and over several generations [124,145]. Interestingly,
a DHA depletion diet affects the brain's DHA content in a region-
selective manner with the pituitary gland, cortex, hippocampus,
cerebellum and striatum being the most severely affected brain
areas [28,122,224]. Cortex, hippocampus, striatum and recently
also the cerebellum are brain areas serving a multitude of different
functions in behavioral organization and performance, and dysfunction
of them was associated with depression [49,113].

2.1.1. The lack of n-3 polyunsaturated fatty acids in the brain induces
depression/anxiety

Selective dietary deprivation of the n-3 FA DHA over several
generations or post-weaning has consistently been shown to in-
crease the expression of depression/anxiety-like behavior in the
FST, novelty suppressed feeding test (NSF) and EPM test largely without
affecting general locomotor activity in rats and mice [28,45,84,203].
However, there are also opposing findings [60]: a two-generational
diet that was deficient in a-linolenic acid, the precursor of DHA, did
not significantly affect locomotion or anxiety-related behavior in the
EPM test in adult and old rats [13] or in mice [149,216]. The response
to hedonic stimuli appears to be reduced in mice that received a two-
generational diet deficient in n-3 FA. The deficient mice showed a
lower sucrose preference in the sucrose preference test and a rightward
shift in the dose-response curve for a morphine reward measured
in a conditioned place preference paradigm. This finding was
interpreted as a diet-induced anhedonic state [65]. Altogether, the
majority of studies suggest that a lack of n-3 FA in the brain induces
depression/anxiety-related behavior in animal studies.

Current hypotheses of the neurobiological mechanisms underlying
anxiety and depression assume dysfunction in the brain's monoaminergic
transmitter systems [130,181] in stress-mediating neuropeptides [185]
or neurotropic factors [49] as well as a deregulation of hippocampal
neurogenesis [131], which may act in concert or alone. Membrane lipids
interfere with and possibly control all these processes and may provide
a key mechanism for how membrane lipid composition can influence
complex depression/anxiety-related behaviors.

2.1.2. Dopaminergic mechanisms

A reduction in brain DHA levels was paralleled by significant effects
on monoaminergic neurotransmission in the frontal cortex (FC) but not
in the (dorsal) striatum or cerebellum of rats. Dopamine (DA) tissue
levels and the specific binding of DA to D,-, but not D,-receptors were
significantly reduced in the FC. This effect may suggest a deficit in cog-
nitive function and emotional evaluation of external stimuli. The activity
of the monoamine transmitter metabolizing enzymes (monoamine
oxidase (MAO) A and B) were not altered in the FC, striatum, or cerebel-
lum of rats [43,44,230]. The effects of a dietary reduction in brain
DHA levels were confirmed in piglets that were fed a diet deficient
in linoleic and linolenic acid from birth to day 18. DHA-deficient animals
showed lower FC tissue levels of DA and of the DA metabolites
dihydroxyphenylacetic acid (DOPAC) and homo-vanillic acid (HVA)
[42]. McNamara et al. [141] reported an increased DA turnover
(DOPAC/DA ratio) in the prefrontal cortex (PFC) after perinatal DHA
deficiency in rats. A morphological analysis revealed that DHA deficien-
cy did not change the synaptic density or clear vesicle density in the
FC of rats. However, DHA deficiency reduced the number of DA-filled
vesicles at presynaptic terminals [229]. Other authors reported a
reduction in tissue DA levels only within the first week after birth in
the cerebral cortex, hippocampus, and striatum in two-generation DHA-
deficient rats. No effect on DA in the FC, hypothalamus, hippocampus,

temporal lobe, brain stem, or ventral striatum was found in rats
after perinatal DHA deficiency [123,141]. In-vivo microdialysis studies
revealed that a DHA deficiency attenuated extracellular DA levels at
baseline conditions in the FC, but increased it in the Ncl. accumbens
(Nac)/shell. The extracellular levels of DOPAC and HVA were increased
in the FC and reduced in the Nac. While the DHA deficiency did not
affect KCl-stimulated DA release or DA transporter (DAT) binding
and function, it significantly reduced the amphetamine-induced DA
response in the FC and Nac [107,230]. This effect may suggest that the
maximal response capacity in core regions for the processing of the
emotional and rewarding value of external stimuli and cognition is
reduced. The expression of vesicular monoamine transporter 2 mRNA
was significantly reduced in both brain regions, which suggests a
reduced filling of vesicles with transmitters. When the vesicular stores
were depleted with reserpine and the extracellular DA levels fell
below the detection range, an amphetamine-induced DA increase
was significantly increased in the Nac of the DHA-depleted animals
(and less so in the FC). This effect may be due to the increase in the
immunoreactivity of tyrosine 3-monooxygenase, which is one of
the enzymes involved in DA synthesis in the ventral tegmental area
(the origin of dopaminergic projections). Additionally, D,- but not
D;-receptor-selective binding was increased in the Nac [228,231].
An imbalance of Dy and D5 signaling in the Nac may crucially affect
processing of salient stimuli, and by that way contribute to depressive
symptoms. While D,-receptor mRNA expression was reduced in the
FC, it was increased in the Nac of the DHA-depleted animals, suggesting
distinct adaptations in the mesocortical vs. mesolimbic DA projections.
Another study, however, found a reduction in D,-receptor affinity and
binding density in the ventral striatum (Nac plus olfactory tubercle) of
female rats with a 20-22% brain DHA deficiency. D,-receptor binding
potential and affinity and Ds-receptor concentration did not differ in
the ventral striatum. In the caudate putamen, a brain area controlling
largely automatized behaviors, D;-receptor binding and affinity showed
an interaction with DHA deficiency and the reproductive status of
female rats, while there was no change in D,-receptor parameters.
In this study, DHA deficiency was not observed to affect DA tissue levels
[41]. The overexpression or knockdown of the D, receptor in the Nac
did not significantly affect general locomotor activity or anxiety-
related behavior in rats [61]. Overall, the majority of findings suggest
that dopaminergic adaptations in the mesocortical DA system could
play a major role in DHA deficiency-induced emotional dysregulation.

2.1.3. Serotonergic mechanisms

A reduction in brain DHA levels was paralleled by an increased
binding specifically at the serotonin, (5-HT,) receptor in the FC.
However, 5-HT tissue levels and 5-HT-metabolizing enzyme levels
were unchanged following DHA reduction [43,44,230]. The effects of
the dietary reduction of brain DHA levels were investigated in piglets
that were fed a diet that was deficient in linoleic and linolenic acid
from birth to day 18. DHA-deficient animals showed lower tissue levels
of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA; [42]).
The effects on tissue 5-HT activity appeared to depend on the timing
of the DHA deficiency. McNamara et al. [140] reported that a perinatal
deficiency resulted in a decrease in 5-HT tissue levels and an increase
in 5-HT turnover in the PFC of rats, while a post-weaning deficiency
caused an increase in 5-HT tissue levels [140,141]. No effect was
found when the DHA deficiency was induced at a post-pubescent age.
Neither a perinatal nor post-weaning DHA deficiency changed 5-HT
transporter (SERT) or 5-HT; s-receptor mRNA expression in the mesen-
cephalon. However, a perinatal deficiency was paralleled by a regional
decrease in tryptophan hydroxylase-2 (TPH-2) expression [140]. The
effect of a brain DHA reduction on 5-HT tissue levels appears to depend
on the female's reproductive status. Levant and colleges [123] reported
adecrease in 5-HT tissue levels in the FC in virgin rats but an increase in
parous female rats after DHA deficiency. No changes were found (in-
dependent of the reproductive status) regarding 5-HT levels in the
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hypothalamus, hippocampus, temporal lobe or brain stem. While
5-HT;a-receptor binding density (Byax) in the hippocampus was slight-
ly reduced in virgin rats, it was significantly increased in the parous
female rats. No effects were found on 5-HT;4- or 5-HT,4-receptor bind-
ing or affinity (Kp) in the FC. The DHA deficiency partially increased
depression-like behavior in the parous animals but had no significant
effect in virgin rats [123]. A DHA deficiency had no effect on 5-HT4-,
5-HT>a-, or 5-HT,c-receptor mRNA expression in the PFC or on mesen-
cephalic 5-HT;a-receptor, SERT or TPH-2 mRNA expression in rats [1].
Altogether, there appeared complex effects of DHA deficiency on the
serotonergic activity, which may essentially depend on when during
development the deficiency occurred. For full understanding of
DHA effects on 5-HT synaptic function, however, more research is
still required.

2.1.4. Noradrenergic mechanisms

A reduction in brain DHA levels was paralleled by preserved
noradrenaline (NA) tissue levels in the FC of rats [43,44,230]. No effect
on NA turnover (3-methoxy-4-hydroxyphenylglycol (MHPG)/NA
ratio) in the ventral striatum or hypothalamus was found in rats after
perinatal DHA deficiency [141]. NA tissue levels, in contrast, were
reduced from the second week after birth in the cerebral cortex,
hippocampus, and striatum in DHA-deficient animals [202]. A DHA
deficiency was shown to reduce midbrain NA transporter (NAT)
mRNA expression and to increase a;4-adrenoceptor mRNA expres-
sion [1]. Treating astrocytes from primary rat cerebral cultures with
DHA increased the number of 3-adrenoceptors [100].

2.1.5. Other mechanisms

DHA deficiency has wide-ranging consequences for protein
expression in the brain. In the hippocampus, 114 proteins (out of
1008 measured) were differentially expressed in DHA-deficient
animals. The cellular processes most affected by these proteins
were neuritogenesis, endocytosis, and exocytosis. However, these
proteins were also involved in mitochondrial dysfunction and
clathrin-mediated endocytosis [55]. A decrease in brain DHA content
was associated with a reduction in hippocampal brain-derived nerve
growth factor (BDNF) mRNA expression and with BDNF protein levels
in female rats [123]. A diet-induced deficiency in brain DHA levels
may also act via indirect pathways for depression/anxiety-related be-
havior. A perinatal DHA deficiency was associated with significantly
higher plasma interleukin-6 (IL-6) and tumor necrosis factor alpha
(TNF-a) levels in rats, both of which could be rescued through normal-
ization of the DHA status as adults [141]. Other mechanisms through
which PUFAs control neuronal function include the modulation of
enzymes [146], voltage-gated ion channels [19], and endocytosis [167].

Despite the enrichment of DHA in brain phospholipids, it cannot
be synthetized de novo in the brain but has to be transported from
the blood into the brain. Recently, the major facilitator superfamily
domain-containing protein 2 (Mfsd2a) was identified as a sodium-
dependent transporter of DHA into the brain. Mfsd2a is localized
exclusively in the endothelium of the microvessels of the blood-brain
barrier [150]. Mice deficient in Mfsd2a (Mfsd2a knockout (KO)) showed
a reduced brain volume. In particular, the hippocampal volume and
number of neurons in the CA1 and CA3 regions were significantly
reduced. Mfsd2a KO mice contained a significantly lower percentage
of DHA but increased levels of arachidonic acid in brain phospholipids.
These mice displayed a massive increase in anxiety-related behavior
in the zero-maze, the light-dark test and in the open field. However,
general locomotion, which always interacts with anxiety measures
in these tests, was significantly reduced as well. Interestingly, these
deficits could not be rescued by a DHA-rich diet to the mothers during
development [150]. These findings suggest that a reduced uptake
of DHA into the brain and subsequent DHA deficit during development
results in macro- and micro-morphological deficits in the brain and
increased anxiety in adulthood.

2.1.6. Increased n-3 polyunsaturated fatty acids reduce depression/anxiety

Several studies have reported on the antidepressant effects of n-3 FA
in normal, i.e., non-depressed animals [121]. An n-3 FA-rich diet for
more than 28-30 days, but not after shorter or acute treatments,
reduced depression-like behavior in rats in the FST [27,92,115] and
the light-dark test of anxiety [29]. This was paralleled by an increase
in a-linolenic acid and DHA levels in the brain. Notably, brain DHA
levels were negatively correlated with depression-like behavior
(immobility) in the FST test [92]. For adult rats, supplementation
with a diet rich in n-3 FA had antidepressant effects in the FST
regardless of whether the supplements were provided during pregnancy
and lactation (to the mothers) or during post-weaning and adulthood
[63]. Maternal supplementation with an n-3 FA-rich diet reduced
depression-like behavior in male offspring rats post weaning and at
adult ages in the FST without affecting general locomotor activity
in the open field test [215,217]. This effect was 5-HT- and 5-HT4-
receptor dependent; pre-treatment with the 5-HT-synthesis inhibitor
para-chlorophenylalanine or with the 5-HT;a-receptor antagonist
WAY 100135 blocked the effects of the diet. The n-3 FA-rich diet
increased hippocampal and cortical BDNF concentrations at both ages
in the offspring. The effects on tissue 5-HT activity, however, appeared
to be age-dependent. Post-weaning, hippocampal 5-HT and 5-HIAA
levels were reduced in the supplemented animals. At an age of
90 days, 5-HT levels were increased, but 5-HIAA levels remained
attenuated [215]. A diet enriched in n-3 FA for 12 weeks was
shown to reverse the decline in hippocampal neurogenesis in old
rats [51]. A two-generational diet enriched with n-3 PUFAs signifi-
cantly increased DHA levels in the striatum and hippocampus but
not in the FC or cerebellum of rats. While NA levels were preserved
in all four regions, 5-HT and DA tissue levels were increased in the
FC. Animals with increased brain DHA levels showed significantly re-
duced spontaneous locomotion but no change in anxiety-related be-
havior in the EPM [30]. A study by Venna et al. [214] showed that
supplementary treatment with n-3 FA for more than 5 weeks had an-
tidepressant effects in the FST, tail suspension test, and NSF test in
male mice. Interestingly, the effects were observed without any sig-
nificant increase in FA in the brain. However, this chronic n-3 FA sup-
plementation increased (1) hippocampal volume, (2) synaptophysin
and BDNF expression in the CA1 and CA3 regions of the hippocampus
and (3) the number of newborn cells in the dentate gyrus [214]. An
in vitro study showed that DHA but not DPA increased neurite length
and branch number in primary hippocampal neurons in rats [25]. A
recent study reported that a 6-week diet with a high n-3/n-6 PUFA
ratio reduced contextual fear memory in mice. The diet had no effect
on the extinction of this memory. Brain and serum n-3/n-6 PUFA levels
correlated negatively with contextual fear memory. Interestingly, this
diet had no effect on body weight, locomotor activity or trait anxiety
levels. The protective effects of the high n-3/n-6 ratio diet were
mediated by an increased sensitivity of cannabinoid 1 (CB1) receptors
in the basolateral amygdala, which increased short-term synaptic
plasticity in this region [215].

Altogether, these findings suggest an important role of the
hippocampus, its serotonergic innervation in particular, and of
BDNF activity and neurogenesis for how n-3 FA reduces depression/
anxiety-related behaviors. For conditioned anxiety, the basolateral
amygdala and CB1 activity emerged as important mechanisms of n-3
FA action. However, it should be noted that the mechanisms explaining
how increased DHA levels in the membrane affect these processes have
only started to emerge and require more mechanistic research [38].

2.1.7. n-3 polyunsaturated fatty acids in the depressed/anxious organism
Depression and anxiety can be induced by environmental factors
such as traumatic events or chronic stress [118,188]. These factors
have been shown to disrupt the regulation of lipid synthesis [32].
Several animal models of depression have tested the effects of a
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reduced or increased nutritional lipid supply on depression-related
behaviors [105].

Isolation stress, induced by separately housing animals, induces
depression-like behavior in the NSF test in mice. A two-generational
diet deficient in n-3 PUFAs did not affect general locomotor activity
and did not worsen the stress-induced depression-like behavior [84].
In contrast, the anxiety induced by early maternal separation stress
was increased in adult rats after receiving an n-3 FA-deficient diet
[139]. Sucrose preference, a measure of the hedonic response of
animals, was synergistically increased via maternal deprivation stress
and brain DHA depletion [139]. These findings suggest that a deficiency
in DHA levels in the brain may have no effects or negative effects in a
depressed/anxious organism.

Chronic mild stress over several weeks can induce depression-like
behavior in rodents [164,222]. Chronic mild stress for 8 weeks led
to the deterioration of the coat state and a reduction in the body
weight of mice. While chronic mild stress did not significantly affect
depression-like behavior in the NSF test, it reduced the latency of
agonistic behavior in the resident intruder test. Chronic mild stress did
not affect DHA levels in the brain but did reduce the brain content of
DPA in the FC, hippocampus, and striatum. It also significantly reduced
tissue levels of NA in the FC and striatum [211]. A dietary supplementa-
tion with n-3 PUFAs significantly increased DHA levels in the FC and
hippocampus and reduced DPA levels without having major effects on
behavior. In the stressed animals, n-3 PUFA supplementation increased
tissue 5-HT levels in the FC and hippocampus but not in the striatum
[211]. This study suggests that the protective effect of n-3 PUFAs could
act by enhancing 5-HT activity in the FC and hippocampus.

Restraint stress is another model to induce depression-like behavior
in rodents, as measured in the FST and EPM tests in a study in male rats.
Dietary supplementation with n-3 PUFAs from day 21 to day 134
had significant antidepressant effects. This treatment reversed the
behavioral effects of the restraint stress in both behavioral tests. There
was also a normalization of the stress-induced increase in plasma
corticosterone levels, which serves as a potential mechanism for the
antidepressant effects [62].

In a rat model of postpartum depression, female rats showed an
increase in immobility in the FST, an increase in hippocampal
corticosterone levels and an increase in pro-inflammatory cytokines.
These effects could be significantly reduced through a 15-day treatment
with n-3 FA via menhaden fish oil. The effects of the n-3 FA at the
highest treatment dose (9 g/kg/d) resembled that of a 15-mg/kg/d
fluoxetine treatment [10]. Fish oil supplementation to mothers during
mating, gestation and lactation reduced the anxiety-like behavior
induced by olfactory bulbectomy in the male rat offspring [169].

The decline in food-motivated operant behavior and social
exploration after the peripheral administration of a bacterial lipo-
polysaccharide was attenuated by the pre-feeding of an n-3 PUFA-
rich diet in male mice [219]. The protective effect of an n-3 PUFA-
rich diet was also found in another model of inflammation. The
injection of zymosan induced acute peritonitis and behavioral
depression. The attenuation of food-maintained operant response
after zymosan treatment was reduced via pre-feeding with an n-3
PUFA-rich diet in male mice [201].

2.2. Clinical evidence

The human peripheral lipidome, with thousands of distinct lipid
molecular species, is well characterized [174]. However, data are scarce
on the composition of brain lipids because material is limited to post-
mortem samples or tissue from patients undergoing brain surgery;
there are also few modern neurospectroscopic options for the analysis
of specific components (for example choline-containing lipids).

Adult neurogenesis (the continual generation of new functional
neurons throughout postnatal life) is primarily localized in the dentate
gyrus of the hippocampus and is essential for the brain's normal

function. The disruption or ablation of this process can lead to severe
impairments including depressive [53,142,196] and anxiety-related
behavior [39,179]. The close contact of the underlying neural stem
cells with local blood vessels is assumed to facilitate the delivery of
biochemical stimuli, such as food-derived components from the
systemic milieu, to this brain region. In this light, a vast number of stud-
ies support the hypothesis that the brain's structure and function may
be modulated by specific aspects of the diet, including frequency, con-
tent and total energy intake throughout the organism's lifespan. There-
fore, dietary interventions have emerged as effective environmental
inducers of neuronal plasticity, and a vast body of literature has focused
on the effect of n-3 long-chain PUFA supplementation on cognitive and
emotional regulation; this literature has obtained incongruent results.

The intake of n-3 long-chain PUFAs found in oily fish (as the
principal source) in modern Western diets is suboptimal; however,
the consumption of oils and foods rich in n-6 long-chain PUFAs has
increased [191]. The resulting lower ratio of n-3 to n-6 long-chain
PUFAs has been implicated in the etiology of psychiatric disorders
such as depression [87]. A number of parallels have been observed
between the neural systems affected by an n-3 PUFA deficiency and
those altered in depression; these systems include neurotransmission,
glucose and amino acid metabolism, the levels of BDNF and proinflam-
matory cytokines as well as neuronal atrophy [194]. The likelihood of
depressive symptoms as estimated via the Beck Depression Inventory
with an adjustment for potential confounders was significantly higher
among 3204 Finnish adults who were infrequent fish consumers
[204]. A lower fish intake was also associated with a higher risk of sui-
cide in a study of Japanese men [88]. A robust correlational relationship
between greater seafood consumption and lower lifetime prevalence
rates of bipolar I and II disorders and bipolar spectrum disorder was
found in a cross-national context [151]. Early studies have already sug-
gested an association between the blood measures of FA status and
the severity of depression [3] as well as a depletion of n-3 FA levels,
particularly DHA, in red blood cell membranes [165] and lowered n-3
PUFAs in the serum phospholipids and cholesteryl esters of depressed
patients [129]. In elderly, community-dwelling individuals, FA composi-
tion was linked to depression when possible confounders such as
inflammation or atherosclerosis were taken into account [205]. Both
n-3 and n-6 PUFA levels were inversely correlated with impulsivity
and depression scores in patients presenting with self-harm [72].
Somatically healthy patients suffering from major depressive disorder
presented not only with a higher prevalence of conventional risk factors
for cardiovascular diseases but also with significantly lower individual
n-3 PUFAs and an overall reduced Omega-3 Index that was associated
with high concentrations of IL-6 proinflammatory cytokine levels [11].
In patients recovering from acute coronary syndromes, those with
major depression two months after discharge had significantly
lower levels of total n-3 PUFAs and of DHA as well as higher ratios
of arachidonic acid to DHA, arachidonic acid to eicosapentanoic
acid (EPA, 20:5n-3) and n-6:n-3 ratio [67].

While changes in plasma/serum and red blood cell membranes
mirror the FA consumed over short time periods [104], other studies
have attempted to identify biomarkers for the habitual, long-term
dietary intake of FA (in the range of a few years) as reflected in adipose
tissue. In a preventive medicine and nutrition program, mildly
depressed subjects had significantly reduced adipose tissue DHA
levels compared with non-depressed participants. These findings
suggest an association between an increased long-term dietary
DHA intake and decreased depression as well as an inhibitory effect
of DHA on the production of cytokines that are associated with de-
pression [136]. In line with previous studies on adult and elderly
subjects, adipose tissue 20:5n-3 EPA levels were also inversely corre-
lated with depression scores in adolescents, indicating that a low
long-term dietary intake of EPA is associated with an increased risk
of depression [134]. However, other studies in healthy adults either
failed to confirm these observations [135] or reported contradictory
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results such as elevated levels of EPA and DHA in patients with
endogenous depression [54].

A small non-significant benefit was found in a meta-analysis of 13
randomized placebo-controlled trials of n-3 FA treatment involving
various doses of EPA and DHA in patients with a major depressive
disorder. Most of the observed treatment efficacy was attributed to a
publication bias and an association with trials of lower methodological
quality, shorter duration, more severely affected participants and
completers rather than intention-to-treat analysis [18]. However,
the inclusion and exclusion criteria for study selection applied in
this meta-analysis have been criticized [125,138] as other recent
meta-analyses have found contradictory results [9,68,69,126,200].

A conclusive decision remains difficult due to the considerable
heterogeneity of the trials. Available evidence indicates that subjects
diagnosed with depression may benefit most from n-3 PUFA admin-
istration, whereas there is no sufficient indication of any benefit for
individuals without a diagnosis of a depressive illness. In patients with
unipolar depression, an 8-week treatment with EPA had therapeutic
effects equal to those of fluoxetine. Furthermore, the combination of
both EPA and fluoxetine was superior to either alone in reducing
depressive symptoms [99].

In female bipolar disorder outpatients with moderate depressive
symptoms receiving daily treatment with ethyl-EPA (the semi-synthetic
derivative of EPA) for 12 weeks, quantitative proton magnetic resonance
spectroscopy revealed significantly increased levels of cerebral
N-acetylaspartate, a putative marker of neuronal integrity, in a
specific region above the corpus callosum [66]. This report under-
lines a potential neurotropic role for ethyl-EPA in depression and
calls for a more detailed investigation of its therapeutic potential
and mechanism of action. The most recent comprehensive meta-
analysis of randomized clinical trials using n-3 PUFAs to treat
depressive disorders found that n-3 PUFA use was significant as an
adjuvant rather than mono-therapy; this effect was independent of
baseline depression severity, trial duration and patient age. However,
there is insufficient evidence regarding the efficacy of n-3 PUFA in
treating depressive symptoms in young or healthy subjects as well as
in perinatal depression scenarios [78].

Due to their co-morbidity with depression, anxiety, stress and anger
were often included as secondary outcomes in studies examining the
effects of an n-3 PUFA diet on depression. The presence and severity
of comorbid anxiety in medication-free patients diagnosed with major
depressive disorder were associated with lower EPA and DHA levels
and a higher ratio of arachidonic acid to EPA [127]. The potential
of n-3 PUFA supplementation to preferentially alleviate major de-
pressive disorders with more severe anxiety should be investigated
in future studies.

In healthy adults, the Spielberger State-Trait Anxiety Inventory score
was positively associated with the (linoleic acid + alpha-linolenic acid)/
(arachidonic acid + EPA) ratio in adipose tissue. This correlation was
thought to originate from the inhibitory role of catecholamines
on delta 6 and delta 5 desaturases [133]. A randomized placebo-
controlled trial in healthy young medical students demonstrated a
reduction in anxiety symptoms and inflammatory markers after
12 weeks of supplementation with EPA and DHA [106]. In a different
setting, the effect of n-3 PUFA administration on anxiety levels was
assessed in substance abusers known for their poor dietary habits
and because of the strong association between anxiety, aggression
and substance use disorders. Compared with patients receiving
placebo capsules, patients taking 3 g of DHA + EPA daily for three
months showed a significant progressive decline in anxiety scores
that remained decreased even three months after treatment discontin-
uation [23]. In a subsequent study, an n-3 PUFA treatment significantly
decreased scores for anxiety and anger. Interestingly, an increase in the
plasma levels of EPA was more strongly correlated with low end-of-trial
anxiety scores, whereas the increase in plasma DHA was more strongly
correlated with low end-of-trial anger scores [24].

A possible confounding factor in these studies is a genetic influence
that has been suggested for the differential response of neurological
disorders to treatment with ethyl-EPA [173]. In Huntington's disease,
patients with a lower CAG repeat number in the Huntingtin gene
showed greater clinical improvement with ethyl-EPA compared with
the placebo group [172]. These pharmacogenetic effects of nutrients
on individuals, labeled as “nutrigenomics”, could also hold true for
patients suffering from psychiatric disorders. Although n-3 FA are clas-
sified as essential, their final bioavailability not only depends on dietary
intake but also on the activity of metabolic pathways including enzymes
that convert shorter- to longer-chain PUFAs. Polymorphisms in genes
coding for FA desaturases 1-3, for example, result in either lower levels
of n-3 or higher levels of n-6 long-chain PUFAs and have been associated
with dyslipidemia and other cardiovascular risk factors [40].

In summary, a large number of observational and interventional stud-
ies indicate beneficial effects for n-3 long-chain PUFAs in the treatment of
depression and anxiety. However, more research is required to determine
the most potent type, dose, and duration of n-3 PUFA supplementation;
additionally, the most potent treatment effects may be limited to specific
patient subgroups. It should also be noted that from current mechanistic
research it is not clear whether PUFA effects in depression and anxiety
are mediated by changing membrane properties or by altered levels of
PUFA-derived lipid signaling molecules [31,178,223].

3. Glycerolipids
3.1. Preclinical evidence

DAG is an important membrane signaling lipid in the brain. DAG is
primarily generated through the hydrolysis of phosphatidylinositol-
4,5-bisphosphate by phospholipase C (PLC). Once generated, DAG
can activate numerous intracellular proteins such as protein kinase C
(PKC), Ras guanyl nucleotide-releasing protein and the transient
receptor potential cation channel. DAG signaling is terminated by
diacyglycerol kinases (DGKs), which convert DAG to the lipid second
messenger, phosphatidic acid (PA). DGKs modulate intracellular lipid
signaling by terminating DAG's effects and by producing PA [206].

DGKJ is a member of the DGK family and is widely distributed in the
brain. A high density of DGKp was found in the neurons of brain areas
associated with emotion such as the olfactory bulb, Nac, amygdala
and hippocampus [26,75]. In the hippocampus, DGKR was found in
the postsynaptic regions of projection neurons as well as in GABAergic
interneurons [90]. Membrane-bound DGKf controls the lipid activity
that regulates long-term potentiation, dendrite outgrowth and spine
maturation in hippocampal CA1 neurons [90,190]. The elimination of
DGKp activity in a KO mouse model resulted in attention deficit and
memory impairment [93,190]. However, these mice also showed psy-
chomotor deficits. During the active period of the day, DGKR KO mice
showed significantly increased locomotor activity in their home cages.
When tested in the open field, general activity was increased; however,
the time spent in the center also increased, suggesting reduced levels of
anxiety. These effects were confirmed in the EPM test in which DGKp
KO mice also showed reduced levels of anxiety and increased locomotor
activity. Interestingly, sensorimotor gating (as measured via prepulse
inhibition) and social interaction were not disturbed in DGKp KO
mice. The reduced anxiety and hyperactivity observed could be reduced
using the mood stabilizer lithium in DGKPB KO mice [101]. These
findings suggest a role for the intracellular lipids DAG and PA in the
control of anxiety-related behaviors [89].

4. Glycerophospholipids
4.1. Preclinical evidence

Chronic unpredictable stress, which induces depression-like behavior
in the FST and oxidative stress in the brains of mice, was shown to alter
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the brain's phospholipid content. Stress significantly reduced the levels
of PI but increased the levels of PC. The increase in PE was not significant
[59]. These effects were observed throughout the entire brain. A more
recent study suggests a brain area-specific regulation of phospholipid
levels. Chronic unpredictable stress for 4 weeks led to a significant
increase in hippocampal PI levels and a decrease in PE levels in the PFC
of rats. No effects on phospholipid levels were observed in the amygdala
or cerebellum [157]. These findings suggest that brain areas need to be
considered separately in functional analyses.

Antidepressant drug treatment does not only affect monoaminergic
systems but may also have profound effects on the phospholipid levels
in the brain. PIPs, also called phosphoinositides, are involved in various
downstream signaling pathways including DAG-regulated PKC acti-
vation, PI-3-kinase (PI3K)/Akt signaling, and inositol triphosphate-
mediated calcium signaling. Cytidine diphosphate diacylglycerol
(CDP-DAG) is an intermediate in the synthesis of PI. Imipramine,
paroxetine, and maprotiline increased the levels of CDP-DAG and PI
in neuron-like PC12 cells [2]. Several classes of antidepressant drugs
dose-dependently increased CDP-DAG levels in the hippocampus, PFC,
and striatum of rat brain slices; these classes include classical
antidepressants (imipramine and desipramine), selective 5-HT
reuptake inhibitors (SSRIs) (fluoxetine and paroxetine), and atypical
agents (maprotiline and nomifensine). Other psychotropic compounds,
such as the antipsychotic agents sulpiride, chlorpromazine, and
haloperidol, or the anxiolytic agents diazepam and phenobarbital
had no effect on CDP-DAG levels. The increased CDP-DAG levels were
found to translate to an increased synthesis of PI and an accumulation
of inositol phosphates in these brain regions [161,163,207,208].
To test whether this effect has any relevance in the antidepressant
action of the investigated compounds, animals were pre-treated with
neomycin (a PIP-inactivating polyhydroxylated aminoglycoside) and
tested in the modified FST. Neomycin reduced the accumulation of
newly synthesized PIP as well as the formation of inositol phosphates
and blocked the antidepressant effects of imipramine, fluoxetine,
and maprotiline [207]. Fluoxetine, imipramine and maprotiline also
increased CDP-DAG levels in the FC and hippocampus of mice. This
effect was at least partially 5-HT-dependent for fluoxetine but not
for imipramine [2]. Overall, these studies suggest an important role
for PIP in the action of antidepressant drugs.

PC are the most abundant phospholipids in membrane bilayers.
Lysophosphatidylcholines (LPC) also have important roles in membrane
permeability and fluidity. A lipidomic study in mice suggested that
a daily intraperitoneal treatment with the antidepressant drugs
maprotiline and paroxetine decreased PC species and increased LPC
species in the PFC, which suggests an increase in PLA, activity.
Interestingly, these effects were region-specific and were not observed
in the hippocampus, striatum or cerebellum. These effects were sug-
gested to lead to the release of DHA [119], which has independently
demonstrated antidepressant effects (see above).

4.2. Clinical evidence

The reaction to mental and emotional stress is thought to play an
important role in the pathophysiology of depression and anxiety.
Healthy subjects were treated with different amounts of a complex of
phospholipids containing PS, PC, PI, PE, lyso-phospholipids and PA.
Treatment with a moderate dose significantly affected the pituitary
adrenal reactivity (ACTH, cortisol) and the psychological response in a
standardized stress test [86]. Glycerophospholipids therefore could be
promising molecules for the treatment of stress-related disorders.

Several important second messengers can be derived from phos-
phorylated PI. Akt, a downstream kinase of PI, has been shown to be
involved in depression and suicide [103]. To investigate the potential
involvement of molecules upstream of Akt, alterations in PI3K activity
were investigated in suicide victims. The role of PI3K in suicide was
investigated post-mortem in the PFC, hippocampus and cerebellum at

the messenger and protein levels. The catalytic activity of PI3K was
significantly decreased in the PFC and hippocampus of psychiatric
suicide victims compared with non-psychiatric non-suicide subjects.
Of note, the reduced PI3K activation was similar for suicide victims of
all psychiatric backgrounds, not only those with major depression.
Thus, aberrant PI3K signaling appeared to be more indicative of suicide
[50]. In a similar study, the enzymatic activities of PI3K and its antago-
nist PTEN were studied post-mortem in the PFC of suicide victims and
non-suicide subjects. Here, irrespective of the suicidal background,
depressed patients had a significant decrease in their PI3K and Akt
activities compared with non-depressed non-suicide subjects [102].
Therefore, how the impaired phosphorylation of lipid second mes-
sengers contributes to the pathophysiology of depression and suicide
remains to be established.

Serotonin and its receptors are highly involved in major depression
and suicidal behaviors. The downstream signaling of 5-HT;4 receptor
activation was investigated in post-mortem brain samples from
depressed suicide victims. The activities of PI3K, Akt and PTEN
were analyzed in membrane fractions of the occipital cortex upon
stimulating 5-HT;4 receptors with an agonist using a biochemical
radio-enzymatic assay. The activities of PI3K and Akt were signifi-
cantly decreased in the occipital cortex of suicide victims, whereas
the PTEN levels in suicide victims were higher compared with non-
psychiatric non-suicide subjects. Alterations in 5-HT 4 receptor acti-
vation appeared to affect different downstream targets that could be
important for deregulated cell survival processes [91]. The respon-
siveness of the 5-HT,, receptor can be directly measured in the
blood platelets of patients via serotonin-activated PI hydrolysis [180].
Depressed patients who made at least one suicide attempt were
investigated. High-lethality attempters had a significantly lower plate-
let 5-HT, receptor response compared with low-lethality attempters.
Therefore, high-lethality attempters appear to have a higher number
of 5-HT receptors accompanied by impaired signal transduction [132].
The 5-HT4-induced hydrolysis of PI was also investigated in subtypes
of depression. Cultured fibroblasts of patients with major depression
with or without melancholia and healthy controls were analyzed.
5-HT produced a concentration-dependent increase in PI hydrolysis
with a significantly lower maximum signal in the fibroblasts of
melancholic patients, whereas non-melancholic patients did not
differ from controls [5].

In a systems biology approach, the PI signaling pathway was
investigated in the context of anxiety- and depression-like phenotypes
based on transcriptome data that also included ortholog model
organisms. PI signaling was implicated in anxiety-like phenotypes [74].

PC and its metabolites can be investigated in humans through the
analysis of blood plasma. The association between choline concentra-
tions in the plasma and non-pathologic symptoms of anxiety and de-
pression were investigated in the Hordaland Health Study. Choline
concentrations were found to be negatively correlated with anxiety
symptoms but not with symptoms of depression in a general population
sample [16]. In a recent lipidomic study, the association between differ-
ent glycerophospho- and sphingolipid species and symptoms of anxiety
and depression was investigated in a healthy Dutch family-based sam-
ple. Plasma PC levels, specifically the absolute levels of PC 36:4 and its
ratio to Cer 20:0, were inversely correlated with symptoms of anxiety
[46]. Thus, decreased PC and choline levels could be associated with
anxiety, at least in a non-pathologic context.

Choline is an essential compound of the phospholipids PC and SM.
Recently evolved neurospectroscopic methods enable the non-invasive
measurement of choline-containing precursors and the products of mem-
brane phospholipid metabolism in vivo [170]. Using 31-phosphorus
neurospectroscopy, a severe case of treatment-resistant depression in a
21-year-old male was monitored prior to and after oral treatment with
ethyl-EPA (4 g/d). After nine months, the patient's depressive symptoms
had disappeared. Regarding the levels of PC-related molecules, there was
a significant increase in membrane phospholipid anabolic precursors,
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namely phosphocholine, phosphoethanolamine and phosphoserine, and
a decrease in metabolites of phospholipid catabolism, namely glycero-3-
phosphocholine and glycero-3-phosphoethanolamine; this observation
indicated a reduction in neuronal phospholipid turnover due to the
treatment [171]. In a proton neurospectroscopy study, children and
adolescents suffering from major depression were investigated for
choline-containing molecules. Depressed children had significantly
lower levels of phosphocholine and glycero-3-phosphocholine in the
right anterior cingulate compared with the control group [158].
Elderly people were studied in the context of late-life major depression.
31-phosphorus neurospectroscopy revealed an increase in glycero-3-
phosphocholine in the white matter compared with the gray matter
in elderly depressed patients. Therefore, white matter appears to be
an important substrate for increased neurodegenerative processes.
The metabolite glycero-3-phosphoethanolamine was significantly in-
creased in the white matter of depressed elderly patients compared
with the control group. This finding indicates an elevated breakdown
of cell membranes in patients with late-life depression [85].

A proton neurospectroscopy study was also conducted in adults
with bipolar disorder. Compared with healthy controls, patients had
significantly higher levels of the choline-containing compounds
phosphocholine and glycero-3-phosphocholine in the hippocampus
and the orbitofrontal cortex. This observation may indicate increased
membrane breakdown and neuronal loss in certain brain regions
relevant to the pathophysiology of bipolar disorder [189]. Lecithin con-
taining more than 90% PC has also been tested as a treatment for mania
occurring in bipolar disorder. In a double blind, placebo-controlled
study, an oral treatment with lecithin (10 mg, three times per day) for
several alternating 1-week trials had a clear therapeutic effect. During
the lecithin application, patients had significantly lower symptoms of
mania as rated using different psychiatric assessment scales [34].

In recent discussions, mitochondrial dysfunction is thought to
play a critical role in the pathophysiology of psychiatric syndromes. In a
proton neurospectroscopy study, the levels of glycero-3-phosphocholine
were investigated in various brain regions. Anxiety symptoms in mito-
chondrial patients correlated positively with glycero-3-phosphocholine
levels in the hippocampus, which was not observed in the control
group. This result could be indicative of an increased phospholipid break-
down and membrane degradation, which is promoted by mitochondrial
dysfunction. Therefore, higher levels of glycero-3-phosphocholine could
reflect hippocampal damage and the associated symptoms of anxiety [8].

The activity of PLA, was measured in the serum of psychiatric
patients using a radio-enzymatic assay with PC as a precursor.
Compared with the healthy controls, patients suffering from major
depression and bipolar disorder displayed a significantly higher
level of PLA;, activity. However, because the level of PLA; activity
also increases in patients with schizophrenia and substance abuse
as well as with infections and inflammatory diseases, the increase in
PLA; in depression should be interpreted with caution [152]. A recent
study investigated the mRNA levels of PLA; in the peripheral blood
cells of medicated patients with recurrent depressive disorder. The
mRNA expression of PLA,; type IIA was significantly increased compared
with healthy controls. Because PLA; belongs to a pathway involved in
inflammation, oxidative and nitrosative stress, these processes could
be relevant in the pathophysiology of depression [70].

Several single nucleotide polymorphisms (SNPs) of the PLA; coding
gene were investigated in the context of depression. Patients suffering
from chronic hepatitis C viral infection under treatment with interferon
o (IFNa) (which often leads to depressive symptoms) were analyzed,
as were patients with major depression. The SNP rs10798059 was
found to be associated with a higher risk of [IFNa-induced depression
and a higher level of somatic depression symptoms. The pathophysiolo-
gy of depression could involve inflammatory mechanisms [199].

Bennet and Horrobin [14] presented an overview of the enzymes
related to phospholipid metabolism that have a known chromosomal
location and positive genetic findings linked to major psychiatric

disorders in the same gene region. The gene coding for PLA, was
found to be associated with risk genes for bipolar disorder in several
studies, thus pointing to a potential role for PLA; in the pathophysi-
ology of the disease. Additionally, the PLC signaling pathway was as-
sociated with bipolar disorder in both an initial and a replicated
sample, as revealed in a recent meta-analysis of genome-wide
association studies [156].

5. Sphingolipids
5.1. Preclinical evidence

Together with cholesterol and glycerophospholipids, sphingolipids
are the most common lipids in brain membranes [94-96]. In addition
to their role in forming a physical barrier, sphingolipids and cholesterol
play an important role in receptor signaling. Together, they form lipid
rafts, which are membrane compartments that are enriched in
G-protein-coupled receptors. Lipid rafts can be considered to be lateral
assemblies of sphingolipids and cholesterol in tight hydrophobic inter-
actions with decreased levels of PC. Rafts are less fluid and gel-like
compared with the liquid crystalline phospholipid bilayer [212,213].
Cholesterol, a privileged binding partner of sphingolipids, can through
its alpha face interact with other lipids (e.g., SM) and through its beta
face interact with transmembrane proteins such as neurotransmitter
receptors. Changes in the composition of the lipid rafts may therefore
directly affect receptor affinity, signaling and subsequent internaliza-
tion [58,166,175]. Lipid rafts have been suggested to be specific sites
for the activation of acid sphingomyelinase (ASM) and subsequent Cer
generation in response to various stressors. Consequently, the hydro-
phobic Cer appears in patches on the cell surface; these patches rapidly
merge to form larger platforms or macrodomains. These platforms bind
membrane-related proteins, such as protein kinase C or c-Raf-1, and
enable the oligomerization of specific cell surface proteins such as
G-protein-coupled receptors [37,108].

Chronic unpredictable stress for 4 weeks increased Cer levels in the
PFC and hippocampus of rats. SM levels were concomitantly decreased.
As a result, serum corticosterone levels were inversely correlated with
PFC SM levels. No significant effects were observed in the amygdala or
cerebellum [157].

The role of sphingolipids in depression/anxiety was investigated
in animal studies that used genetic approaches to manipulate the
relevant anabolic and catabolic enzymes. Mice with a transgene for
acid sphingomyelinase (tgASM) showed higher ASM activity and
Cer production in the hippocampus [80]. The increased Cer levels
in the hippocampus were paralleled by a decline in neurogenesis,
neuronal maturation, and neuronal survival [80], which are depression-
related neuronal markers [113,184]. There was also a reduction in
Akt phosphorylation at Ser473 [80], which has been shown to con-
trol hippocampal neurogenesis [232]. A T308DS473Akt1 mutation
in PC12 cells prevented the inhibitory action of C16 Cer on cell prolifer-
ation [80]. At the behavioral level, tgASM mice showed a depression/
anxiety-like phenotype as measured using the coat status, NSF test,
splash test, open field, light-dark box, and FST [80]; for a review,
see [111].

Mice deficient in ASM (ASM KO) typically develop Niemann-Pick
disease, a lysosomal storage disorder, in late adulthood. When tested
prior to displaying signs of the disorder, homozygous ASM KO mice
already presented reduced Cer levels in the hippocampus and showed
signs of reduced anxiety and less severe depression-related behaviors.
Genetically induced Cer hypo- or hyperfunction had no gross effects
on synaptic structure. This change also did not impair synaptic function
in the hippocampus [80]. Antidepressant drugs, many of which appear
to be functional inhibitors of ASM [6,110,112], can normalize the effects
of chronic unpredictable stress in wild type and tgASM animals but not
in ASM KO mice.
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The pharmacological inhibition of ASM with tricyclodecan-9-yl-
xanthogenate inhibited IFNa-induced 5-HT uptake in T-cells [198].
This observation suggests that ASM (and its inhibition in particular)
could be a major pathway for the pharmacological effects of
antidepressants [80,111].

The pharmacological inhibition of neutral sphingomyelinase
2 (NSM2) with GW4869 reduced the level of multiple Cer species in
the brain. NSM2 inhibition had no effect on episodic-like memory but
did impair spatial reference memory in mice [220]. This effect was
paralleled by changes in N-methyl-p-aspartate (NMDA) and alpha-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tor subunit composition as well as the membrane insertion of these re-
ceptors [220]. Conversely, neutral sphingomyelinase (NSM) application
increased Cer levels, increased action potential frequency, and reduced
the slow after-hyperpolarization in hippocampal slice preparations
[153]. These effects are correlated with increased information
processing in the hippocampus. An in vitro study showed that
the pharmacological inhibition of NSM with sphingolactone-24 in
T-cells inhibited IFNa induced 5-HT uptake [198]. This suggests an
antidepressant effect of NSM inhibition.

Acid ceramidase (AC) metabolizes Cer in the brain. The pharma-
cological inhibition of ceramidase with LCL385 had no effect on
depression-like behavior in the FST in rats [148]. In AC heterozygous
KO mice, however, neurogenesis, neuronal maturation, and neuronal
survival were significantly reduced and were paralleled by an increase
in depression-like behavior [80].

While Cer is hydrolyzed by ceramidases, the sphingosine generated
as a result can be re-acylated by ceramide synthases (CerS). In mammals,
six CerSs have been described. In flincher mice, a spontaneous deficiency
in CerS1 activity was identified. This alteration resulted in reduced total
brain Cer levels and reduced C18 but increased C16 Cer levels. At the
behavioral level, the CerS1 deficiency was associated with cerebellar
and motor dysfunctions [227]. A genetically induced deficiency in CerS1
reduced C18 Cer levels in the cerebellum but increased C16 and C22 Cer
levels, while the total Cer level was unaltered. These effects were associat-
ed with attenuated locomotor activity and reduced anxiety in the open
field test. Impaired motor learning and spatial working memory were
also reported [73]. A genetically induced deficiency in CerS6 in mice
was associated with reduced C16 Cer levels in the thymus, small intestine,
and kidney. However, there was only a small C18 Cer decrease observed
in the cerebellum and no effect in the forebrain. CerS6 KO mice were
hyperactive in a novel environment but did not display altered levels of
anxiety-related behavior or changes in novel object recognition learning
[52]. These findings suggest an involvement of Cer not only in anxiety-
related behavior but also in locomotor activity and cognitive impairments.
Taken together, the genetic and pharmacological evidence from preclini-
cal studies suggests that Cer, which is constitutively controlled by ASM,
NSM, AC and CerS activities, may critically control depression-associated
neuronal mechanisms and behaviors.

SM and Cer are critical for the formation of lipid rafts and signaling
platforms, respectively [79,108], which mediate monoamine receptor
membrane localization, signaling and internalization [17,154,155,195].
While genetic approaches have addressed the role of Cer indirectly
(i.e., by modulating its formation and metabolism), pharmacological
approaches have provided a more direct approach. Repeated local
injections of C16 Cer into the dorsal hippocampus of mice induced
depression-like behavior in the NSF and sucrose preference tests [80].
This result is in line with the effects of chronic unpredictable
stress, which not only doubled hippocampal Cer levels and reduced
neurogenesis and neuronal maturation but also induced depression-
like behavior in mice [80]. Cer application to rat hippocampal slices
depressed long-term synaptic responses. This effect was mediated by
ionotropic glutamate receptors [225].

While the available evidence points to a depression/anxiety-inducing
effect of Cer abundance in the hippocampus, the antidepressant action
of a pharmaco-treatment may not always function by reducing the

hippocampal Cer content. A lipidomic study suggested that a daily i.p.
treatment with the antidepressant drugs fluoxetine, maprotiline and par-
oxetine, which are functional inhibitors of ASM in the brain [110], had no
significant effects on the hippocampal levels of Cer or SM. In the PFC, how-
ever, maprotiline and paroxetine reduced SM species and increased Cer
species [119]. However, this study was conducted in normal mice,
which do not show elevated levels of hippocampal Cer. The action of an-
tidepressant drugs may therefore differ in a depressed/anxious organism.

GalCer is a major component of the myelin sheath in the brain. Early
life stress, which is administered during early weaning, induces a signif-
icant but temporally restricted increase in GalCer at 5 weeks of age in
mice. This effect was specific for the amygdala and not observed in the
hippocampus or PFC. The changes in GalCer were associated with in-
creased anxiety-like behavior in the EPM test at 5 and 8 weeks of age.
These findings suggest that GalCer in the amygdala plays an important
role in the development of a hyperanxious phenotype [159].

Cer can be hydrolyzed by one of several ceramidases to sphingosine,
which can be phosphorylated to sphingosine-1-phosphate (S1P) by one
of two sphingosine kinases [111,114]. Restraint stress in rats, which
caused an increase in anxious behavior, increased the serum levels of
S1P and sphinganine-1-phosphate but had no effect on sphingosine or
sphinganine levels [97,98]. S1P is a powerful inducer of neurogenesis in
the brain [7]. Neurogenesis appears to be important for coping with
new stressors [196] and for the effects of antidepressant drugs [184]. An
S1P increase has been indicated to play a causal role in stress-induced
anxiety. The local infusion of S1P into the cerebral ventricles for 7 days
via osmotic mini-pumps increased anxiety-related behavior in the EPM
test. The increase of S1P in the brain caused a regionally selective decrease
in tyrosine hydroxylase expression in the amygdala but not in the cortex.
Extracellular-signal regulated kinase (ERK) and phosphoERK expression,
which are postsynaptic markers for dopaminergic activity, were not sig-
nificantly affected in either region [97]. These findings suggest that stress
may cause an increase in brain S1P levels, which reduces dopamine syn-
thesis in the amygdala and induces an increase in anxiety-related behav-
ior. Sphingosine kinase 2 (SphK2) is the main isoform of the enzyme in
the brain. SphK2 ™/~ mice express significantly less S1P and dihydro-
S1P in the hippocampus than wild type controls. The initial fear response
and acquisition of contextual fear memory was not altered in SpHK2 ™/~
mice. However, SpHK2 ™/~ mice showed a significantly impaired extinc-
tion of the fear memory. These findings suggest that S1P is not required
for fear-related behavioral conditioning to neutral stimuli. However, S1P
appears to be required for the extinction of conditioned fear [82].

S1P can act intracellularly as an epigenetic regulator of histone
deacetylase activity [81]. At the cell membrane, S1P can interact with
five G-protein coupled receptors, SIP(1)-S1P(5). The S1P(2) receptor
is exclusively expressed in hippocampal pyramidal/granular neurons.
Mice lacking this receptor (S1P(2) /™) showed a high rate of spontane-
ous seizures and cognitive deficits. They also exhibited increased levels
of anxiety-related behavior in the EPM [4].

There is indirect evidence for an alteration in brain sphingolipids in
depression from studies on the stimulatory a-subunit of the G-protein
(Gsa). In response to chronic treatment with antidepressant drugs,
Gsa migrates from lipid rafts rich in cholesterol and sphingolipids
to non-raft membrane domains. Cell and animal studies have revealed
an increased coupling between Gsa and adenylate cyclase following
antidepressant treatment [48].

Altogether, these findings suggest that sphingolipids in the brain
directly control depression/anxiety-related behavior. Although a
crucial role for sphingolipids in behavior has only started to emerge,
mechanisms of action point toward a modification of monoaminergic
receptor signaling and transmitter synthesis.

5.2. Clinical evidence

Brain sphingolipids are implicated in storage diseases such as
Niemann-Pick or Gaucher disease [183]. The clinical picture of these
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storage diseases is heterogeneous, but the fatal end of the diseases
is dominated by central nervous system involvement that includes
neurodegeneration. Depression occurs frequently in patients with
sphingolipid storage diseases such as Tay-Sachs [128], Fabry [35,117,182]
and Gaucher diseases [162].

The quantification of lipids in human brain tissue provides direct
evidence for the involvement of sphingolipids in affective disorders.
Increased levels of Cer have been found in the white matter of patients
with bipolar disorder [187]. Indirect evidence has been obtained from
the study of processes in the brain that depend on sphingolipids and
from studies using peripheral samples. In the human brain tissue, Gso.
is localized to both lipid rafts and non-raft membrane regions. However,
in depressed suicide subjects, Gsa is preferentially localized to lipid rafts
in the cerebellum and prefrontal cortex [48]. This observation may serve
as indirect and circumstantial evidence for an alteration of sphingolipids
in the brains of depressed patients. Several studies have used peripheral
samples to provide evidence for an altered sphingolipid metabolism in
patients with depressive disorders. ASM activity is increased in the
peripheral blood mononuclear cells of patients with major depressive
disorder with a higher activity in patients with severe symptoms
[109]. In a study on cognitively impaired patients and controls, elevated
plasma Cer levels have been found in patients with a diagnosis of major
depression regardless of dementia status [76]. Elevated ASM activity
and Cer levels have been found in the blood of combat veterans with
post-traumatic stress disorder [83], which is frequently associated
with depression. In Parkinson's disease patients, several Cer species in
the plasma were positively associated with depressive symptoms
[144]. Altered sphingolipid metabolism has also been found to be
associated with depressive symptoms in a Dutch family study [46].
Therefore, all studies investigating peripheral sphingolipid metabolism
in patients with depressive symptoms have found an increased activity
of ASM and/or elevated levels of Cer. However, the clinical data on the
association between depression and sphingolipid metabolism remains
insufficient. Two of these studies examined sphingolipid metabolism
in patients with major depressive disorder [76,109]. Other studies ex-
amined persons with other types of disorders that also had depressive
symptoms [46,83,144]. All of these studies used peripheral samples
from patients. However, it is likely that sphingolipid metabolism is
also altered in the brains of patients with depression. Cer may be the
missing link unifying the diverse findings (reduced neurogenesis, in-
creased cardiovascular risk and increased markers of inflammation
and oxidative stress) associated with major depressive disorder [111].

6. Summary

Neuronal membranes in the brain are formed by a plethora of lipid
species. Neuronal membranes are not fixed structures but show a highly
dynamic regulation of their lipid composition. The lipid composition, in
turn, may directly control the assembly of signaling proteins in these
membranes. This assembly has significant effects on neuronal function
and signaling. For example, the membrane lipid composition changes
in response to a long-term diet or as a consequence of the complex
network of lipid-regulating enzymes. Both sources may contribute to
functional behavioral adaptations but may also function as pathways
for the pathogenesis of mental disorders. Accumulating evidence now
provides strong support for the view that membrane-forming lipids in
the brain can play a crucial role in depression and anxiety disorders.

Unsurprisingly, distinct classes of lipids appear to take on different
roles in mental disorders. Well-supported preclinical evidence has
shown that a lack of n-3 PUFAs in the brain for long periods of time
can induce depression- and anxiety-associated behaviors. Functional
analyses have suggested that subsequent focal dopaminergic and sero-
tonergic adaptations may mediate these effects. However, numerous
other downstream pathomechanisms have been suggested and need
confirmation in future studies. Given the omnipresent distribution of
membrane lipids at synapses in the brain, we speculate that many

more transmitter systems are affected by membrane lipid dysregulation.
An increased n-3 PUFA supply may reduce depression- and anxiety-
related behavior in normal organisms and also attenuate them in
pathological conditions. Possible mechanisms for these beneficial
effects include the increase of hippocampal and amygdala circuit
function. Clinical evidence supports the hypothesis that subjects with
diagnosed depression could benefit from n-3 PUFA administration.

A role for glycerolipids is emerging in the control of anxiety-related
behaviors, whereas glycerophospholipids appear to be important for
the therapeutic action of antidepressant drugs. There is now strong
evidence for an important role of sphingolipids in both the pathogenesis
of depression/anxiety and the action of known antidepressant drugs.
In particular, the sphingolipid Cer may be the missing functional link
between distinct pathological markers of major depressive disorder
such as reduced neurogenesis, increased cardiovascular risk and in-
creased inflammation and oxidative stress. Many clinically effective an-
tidepressants inhibit ASM and thus Cer production in the hippocampus,
which could be essential for the therapeutic action of the very same
antidepressants.

Although the lipid landscape of the brain is complex and highly
dynamic, specific lipid classes now appear to be directly involved in
depression and anxiety disorders. This knowledge may provide
lipid-based targets for disease prevention and treatment. It should
be noted that other membrane-forming lipids in the brain may
also be involved in depression and anxiety as well as in other
mental disorders.
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