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Abstract
Major depression is one of the most common and severe diseases affecting the world’s 
population. However, the pathogenesis of the disease remains inadequately defined. 
Previously, a lack of monoaminergic neurotransmitters was the focus of pathophysiological 
concepts; however, recent concepts focus on a alteration of neurogenesis in the hippocampus. 
This concept suggests that neurogenesis is decreased in major depression with a rarefication 
of neuronal networks and a lack of new, immature neurons in the hippocampus, events that 
may result in the clinical symptoms of major depression. However, molecular targets involved 
in the pathogenesis of major depression and, in particular, a reduction of neurogenesis, are 
largely unknown. We have recently discovered that an inhibition of the acid sphingomyelinase/
ceramide system mediates the effects of tri- and tetracyclic antidepressants. Moreover, an 
accumulation of ceramide in the hippocampus results in depression-like symptoms. This 
suggests the acid sphingomyelinase/ceramide system is very important in the pathogenesis 
of major depression. 

Pathophysiological models of major depression

With a lifetime prevalence of more than 10% in the overall population and an estimated 
suicide rate of 10%, major depressive disorder is one of the most severe chronic illnesses 
[1]. Patients with major depression suffer not only from depressed mood, loss of interest, 
anhedonia, fear, feelings of worthlessness, weight loss, insomnia, and concentration deficits, 
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but also from cardiovascular symptoms, osteoporosis, adrenocortical activation and a gen-
eral pro-inflammatory status [2-9]. 

Although major depression is a very common disease, the pathogenesis is presently 
still unknown. Many patients show high plasma concentrations of cortisol and dysfunction 
of the hypothalamic-pituitary-adrenal axis [1]. However, the molecular mechanisms causing 
this increase as well as the pathophysiological consequences of these changes are still poorly 
characterized. A recent concept indicated a lack of neurogenesis in the hippocampus [10-
20], a concept that will be discussed in more detail below. Surprisingly, even the molecular 
targets of antidepressants are as of yet unclear. Most antidepressants regulate the concen-
trations of monoaminergic transmitters in the synaptic space, and the effect of antidepres-
sants on the monoaminergic transporters in the synpatic membrane has been considered 
the active mechanism of these drugs [21]. However, this hypothesis has been questioned 
since (i) some antidepressants, in particular tianeptine, promote serotonin reuptake rather 
than block it [22, 23], (ii) the regulation of synaptic uptake of monoamines is very rapid after 
treatment, while the clinical effect of antidepressants is usually delayed by 2 to 4 weeks and 
(iii) anti-inflammatory therapies also show therapeutic effects in major depression, which is 
difficult to explain with the monoaminergic neurotransmitter hypothesis of antidepressants 
[4, 5, 24]. 

In particular the delay of 2-4 weeks in therapeutic effects of many antidepressants sug-
gests a trophic effect of antidepressants and, therefore, recent concepts of the pathogenesis 
of major depression have focused on a defect in neurogenesis and the correct function of 
neuronal networks in the hippocampus to explain the pathophysiology of major depressive 
disorder. The hypothesis that hippocampal neurogenesis is reduced in major depression 
is also supported by the finding that at least in some cases major depression also leads to 
hippocampal atrophy [25]. The atrophy seems to be primarily caused by a reduction in the 
number of glial cells rather than in the number of neurons [26]. The role of glial cells in the 
genesis of major depression is largely unknown. However, a concept of an imbalance be-
tween neurogenesis and possibly glial cell genesis and apoptotic events in the hippocampus 
has become very attractive to explain many of the pathophysiological findings. It should be 
noted that the molecular cause for the defect of neuro- and gliagenesis is also still unknown. 

Mammalian brains show two hotspots of neurogenesis- the subventricular zone of the 
lateral ventricles and the hippocampal dentate gyrus [27-33]. However, newborn neurons 
are able to migrate, for instance into the olfactory bulb [29-31] or the striatum [34]. In the 
hippocampus, the newborn, immature neurons migrate to and differentiate in the granular 
cell layer, a process that requires 3 to 4 weeks. This time frame is very similar to the delayed 
action of many antidepressants and supports the notion that reconstitution of neurogenesis 
and correct integration and/or formation of neuronal networks is required to treat major 
depression [30, 35-38]. The molecular mechanisms mediating proliferation of neuronal and 
glial stem cells are largely unknown. Thus, it was shown that low doses of reactive oxygen 
species, a reduction of cellular ceramide by inhibition of the acid sphingomyelinase and an 
activation of phosphatidylinositol-3-kinase (PI3K), Akt, Erk1/2, Wnt3a, Notch molecules 
and cAMP response element-binding protein (CREB) trigger neurogenesis [39-47], but the 
molecular details of these signaling molecules and pathways in neurogenesis warrant fur-
ther research. 

Consistent with the hypothesis that hippocampal neurogenesis is impaired in major 
depression, it was demonstrated that antidepressants such as fluoxetine, desipramine, imi-
pramine, and amitriptyline induce neurogenesis of cultured neurons in vitro, but more im-
portantly also in vivo in the hippocampus [10-12,15, 16, 18, 19]. The latency of antidepres-
sant-induced neurogenesis is consistent with the delayed action of these drugs. Neurogene-
sis correlated with the improvement of depressive-like behavior in mouse models which was 
blocked by irradiation of the hippocampus [19], suggesting that neuronal proliferation is not 
just a simple readout of changes in the brain during major depression, but rather causative 
in the pathogenesis of the disease. 
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On the other hand, clinical experience indicates that irradiation of the brain or general 
chemotherapy blocking proliferation of stem cells does not necessarily result in major de-
pression. Further, treatment of major depression with sleep deprivation or electroconvulsive 
therapy shows fast effects that are inconsistent with neurogenesis, maturation and integra-
tion into or even the formation of neuronal networks of newly formed neurons. Thus while 
neurogenesis may be required for the effects of antidepressants, it may not be sufficient to 
overcome major depression. Thus, there are likely unknown mechanisms that are disturbed 
and must be targeted by antidepressants. However, massive formation of immature neurons, 
for instance after electroconvulsive therapy [48] may change the excitability of the hippo-
campus and the limbic system [49]. In addition newborn neurons might negatively regulate 
the hypothalamic-pituitary-adrenal axis, which seems to be overactive in many patients with 
major depression [50, 51]. Such a negative feedback system between immature neurons in 
the hippocampus and the hypothalamic-pituitary-adrenal axis may allow an adequate re-
sponse to stress and therefore be important for the treatment of major depression [51, 52].

Finally, stress and glucocorticoids reduce, and antidepressants as well as electrocon-
vulsive therapy induce, the production of a variety of growth factors, such as brain-derived 
neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and nerve growth 
factor (NGF), which act on neurons and on vascular endothelial cells and thereby induce 
neurogenesis and angiogenesis [26, 53, 54]. An improved coupling of neuronal stem cells 
and the vascular cells in the stem cell niche might promote neurogenesis and thereby reduce 
symptoms of major depression.

As discussed below, antidepressants and many growth factors inhibit the acid sphingo-
myelinase/ceramide system. It might be possible that antidepressants have a relatively weak 
effect on that system, while growth factors released by electroconvulsive therapy might ex-
hibit a strong inhibition of the acid sphingomyelinase/ceramide system. If inhibition of the 
hippocampal ceramide concentrations under a certain critical level is required for treatment 
of major depression, the strong effects of electroconvulsive therapy have a fast therapeutic 
effect, while the lower potency of antidepressants to inhibit the acid sphingomyelinase only 
slowly reduces the concentration of hippocampal ceramide explaining the delayed onset of 
the action of these drugs. If ceramide-levels are too high to be reduced by antidepressants 
under that critical level, the patient would fail to respond to therapy. This model is certain-
ly speculative, and has to be proven in vivo, but it may explain many of the discrepancies 
between the fast action of electroconvulsive therapy and the slow onset of action of antide-
pressants. 

Role of the acid sphingomyelinase/ceramide system in major depression

We have previously shown an important role of the acid sphingomyelinase (EC 3.1.4.12, 
sphingomyelin phosphodiesterase, optimum pH 5.0; gene symbol, Smpd1) and ceramide 
system in major depression. Acid sphingomyelinase is a glycoprotein that functions as a ly-
sosomal hydrolase, catalyzing the degradation of sphingomyelin to phosphorylcholine and 
ceramide at acidic pH [55]. Acid sphingomyelinase is present in lysosomes but also on small 
acidic domains of the outer leaflet of the plasma membrane [56]. The latter form was shown 
to have important signaling functions [56]. In addition, acid sphingomyelinase is also pres-
ent in mitochondria, but the function of the mitochondrial form is unknown [57]. Depending 
on its glycosylation, acid sphingomyelinase is also secreted into the extracellular space [58].

Ceramide is formed by hydrolysis of sphingomyelin by the activity of acid, neutral, and 
alkaline sphingomyelinases depending on the pH optimum of the enzyme activity [59], by 
de novo synthesis [60], by degradation of complex (glyco)sphingolipids [61] and even from 
sphingosine by a reverse ceramidase activity [62]. Ceramide generated by acid sphingomy-
elinase has been shown to play a pivotal role in the mediation of stress and apoptotic stimuli 
including CD95, CD40, DR5/TRAIL, FcγRII, CD5, LFA-1, CD28, TNFα, Interleukin-1 receptor, 
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PAF-receptor, infection with P. aeruginosa, S. aureus, N. gonorrhoeae, Sindbis-Virus, measles 
virus, Rhinovirus, γ-irradiation, UV-light, Cu2+, cisplatin or gemcitabine [56, 63-84].

Mechanistically, surface acid sphingomyelinase releases ceramide in the outer leaflet of 
the cell membrane [56]. Ceramide molecules spontaneously form small ceramide-enriched 
membrane domains that fuse to large ceramide-enriched membrane platforms. These plat-
forms serve to trap and cluster receptor molecules and to initiate stress signals by mecha-
nisms that still require definition. However, ceramide also directly regulates molecules, in 
particular ceramide released within multilamellar bodies or lysosomes binds to and acti-
vates cathepsin D, which translocates into the cytoplasm and causes cell death by activating 
Bid [85]. Other proteins that bind to ceramide include: kinase supressor of Ras (KSR), which 
mediates cell death via Bad [86]; LCIIIB, which mediates autophagy [87]; PLA2; which me-
diates the release of arachidonic acid; several protein kinase C (PKC) isoforms [88, 89]; and 
additional metabolites that may be important not only for apoptosis but also for the gener-
ation of inflammatory responses [88]. Finally, ceramide was shown to regulate important 
cellular ion channels, in particular calcium-release activated calcium channels (CRAC) and 
the potassium channel Kv1.3 [90, 91].

Although the regulation of acid sphingomyelinase is not well characterized, the enzyme 
seems to be regulated by redox mechanisms [92], in particular via a redox sensitive cysteine 
at position 629 (Cys629) [93]. As mentioned above some growth factors, for instance VEGF, 
inhibit acid sphingomyelinase [94]. 

The first link between the acid sphingomyelinase and major depression came from the 
observation that many tricyclic and tetracyclic antidepressant drugs, such as desipramine, 
imipramine or amitriptyline, functionally inhibit the activity of acid sphingomyelinase [95, 
96]. Tri- and tetracyclic antidepressants interfere with the binding of the enzyme to the lyso-
somal and possibly also outer plasma membrane surface, displace the enzyme from the sur-
face and induce a proteolytic degradation of the enzyme within lysosomes or the release of 
the enzyme from the surface and thereby mediate a functional inhibition of the acid sphingo-
myelinase [97-102]. While it was assumed that this effect of antidepressants is a side effect, 
we have shown that therapeutic concentrations of the antidepressants amitriptyline and 
fluoxetine also reduce acid sphingomyelinase activity and ceramide concentrations in the 
hippocampus. This action mediates the therapeutic effects of antidepressants, in particular 
increased neuronal proliferation, maturation, and survival and improved behavior in mod-
els of stress-induced depression [12]. These studies employed genetically-modified animals 
that either lacked or overexpressed the acid sphingomyelinase to prove that the effects of 
antidepressants are in fact mediated by targeting the acid sphingomyelinase [12]. Moreover, 
micro-injection of C16-ceramide (a natural ceramide) into the hippocampus PDMP-induced 
increased abundance of ceramide, or accumulation of ceramide within the hippocampus 
by genetic heterozygosity of the acid ceramidase or transgenic overexpression of the acid 
sphingomyelinase decreased neuronal proliferation, maturation, and survival, and resulted 
in a depression-like behavior in mice even in the absence of stress [12]. This indicates that 
increased levels of ceramide are able to trigger symptoms of major depression even without 
stress, and that antidepressants act, at least partially, via a reduction of ceramide levels in 
the hippocampus. Chronic unpredictable stress resulted in increased hippocampal ceramide 
abundance [12]. It is presently unknown whether patients with major depression exhibit 
increased ceramide levels in the hippocampus. In blood samples, increased acid sphingo-
myelinase activity and ceramide concentrations have been found in major depressive disor-
der, depressive syndromes and in posttraumatic stress disorder [94, 103-106]. Endogenous 
changes in ceramide metabolism may result in at least some forms of major depression. At 
present, neither the molecular mechanisms of the regulation nor the targets of ceramide in 
major depression are known. 

In summary, studies in recent years provide evidence that neurogenesis, neuronal 
maturation, and the function of immature neurons in the hippocampus are novel cellular 
pathophysiological systems that may be altered in major depression, and that these are in-
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teresting novel targets for treatment. Mechanistically, the acid sphingomyelinase/ceramide 
system does not only serve as target for antidepressants but an accumulation of ceramide 
also directly induces major depression. It will be very exciting to explore how ceramide me-
diates major depression, whether this is a specific effect restricted to experimental systems 
or whether such a role of ceramide applies to many forms of major depression, and whether 
certain levels of ceramide in the hippocampus are involved on the range of major depression 
from mild to severe cases. 
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